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Abstract: In this paper a novel approach is proposed to address the problem of deriving non-

stationary stochastic processes which are compatible in the mean sense with a given (target) 

response (uniform hazard) spectrum (UHS) as commonly desired in the aseismic structural 

design regulated by contemporary codes of practice. The appealing feature of the approach is 

that it is non-iterative and “one-step”. This is accomplished by solving a standard over-

determined minimization problem in conjunction with appropriate median peak factors. 

These factors are determined by a plethora of reported new Monte Carlo studies which on 

their own possess considerable stochastic dynamics merit. In the proposed approach, 

generation and treatment of samples of the processes individually on a deterministic basis is 

not required as is the case with the various “two-step” approaches found in the literature 

addressing the herein considered task. The applicability and usefulness of the approach is 

demonstrated by furnishing extensive numerical data associated with the elastic design UHS 

of the current European (EC8) and the Chinese (GB 50011) aseismic code provisions. 

Purposely, simple and thus attractive from a practical viewpoint, uniformly modulated 

processes assuming either the Kanai-Tajimi (K-T) or the Clough-Penzien (C-P) spectral form 

are employed. The Monte Carlo studies yield damping and duration dependent median peak 

factor spectra, given in a polynomial form, associated with the first passage problem for UHS 

compatible K-T and C-P uniformly modulated stochastic processes. Hopefully, the herein 

derived stochastic processes and median peak factor spectra can be used to facilitate the 



aseismic design of structures regulated by contemporary code provisions in a Monte Carlo 

simulation-based or stochastic dynamics-based context of analysis. 

Keywords: non-stationary process, design spectrum compatible, inverse problem, Monte 

Carlo simulation, peak factors, artificial accelerograms. 

 

1. Introduction 

In the practice of aseismic design of structures, the concept of the elastic response 

spectrum has been traditionally used to describe the hazard posed by seismic events on 

structures (e.g. Chopra 2007). Furthermore, inelastic response spectra of reduced spectral 

ordinates are utilized to account for the expected hysteretic behavior of structures exposed to 

extreme seismic loads (e.g. Newmark and Hall 1982). In fact, aseismic code provisions 

represent the input seismic loads by means of analytically defined (uniform hazard) 

response/design spectra (UHS) (e.g. CEN 2004, ASCE 2006). The practice of using 

response/design elastic/inelastic spectra allows for considering linear dynamic response-

spectrum based types of analyses which significantly facilitates the design of 

“ordinary/regular” structures.  

Nevertheless, additional dynamic linear and non-linear time-history analyses are 

further mandated by regulatory agencies to be performed in the design of “special” and/or 

“non-regular” structured facilities  (e.g. CEN 2004, ASCE 2000, ASCE 2006, GB 50011 

2001). These analyses require the consideration of small suites of accelerograms (commonly 

three to seven pairs of accelerograms) whose average response spectrum lies close to (i.e. is 

compatible with) the elastic response/design UHS. Two common approaches to obtain such 

accelerograms is either by careful selection and, if needed, scaling of field recorded signals 

(see e.g. Katsanos et al 2010, Jayaram et al 2011, and references therein), or by generation of 



simulated time-histories compatible with power spectra which are consistent with the design 

spectrum (see e.g. Preumont 1985a, Giaralis and Spanos 2009, Cacciola 2010, Martinelli et 

al. 2011, and references therein). The consensus in the earthquake engineering community is 

to use field recorded accelerograms over simulated ones to account for the uncertainty of the 

non-stationary attributes (i.e. the time-dependent amplitude and frequency content) observed 

in strong ground motions. However in some cases the availability of seismic records 

satisfying certain seismological and site soil conditions criteria may be limited (e.g. Iervolino 

et al. 2008). This may be a rather important issue especially in cases where a large number of 

records is required to be used within a Monte Carlo simulation-based analysis (e.g. Taflanidis 

and Jia 2011). Moreover, in certain other cases, random vibration analyses may be deemed 

essential to be included in the aseismic design process (e.g. Wen and Eliopoulos 1994). The 

aforementioned cases call for a representation of the input seismic excitation by an 

appropriately defined response/design UHS compatible stochastic process. 

In this context, various researchers have proposed methods to relate a response/design 

spectrum to a power spectrum characterizing a stationary random process (see e.g. Kaul 

1978, Gupta and Trifunac 1998, Falsone and Neri 2000, Giaralis and Spanos 2010 and 

references therein). Such a relation involves the consideration of the so-called peak factor 

which is closely associated with the first passage problem of the response of stochastically 

excited linear single-degree-of-freedom (SDOF) systems (e.g. Vanmarcke 1976). This 

problem is not amenable to a general closed form solution, but for the stationary case there 

are reliable semi-empirical expressions for the peak factor (e.g. Vanmarcke 1976, Preumont 

1985b).  

Arguably, assigning a stationary process to a response/design spectrum involves a 

rather restrictive limitation in dealing with an inherently non-stationary phenomenon (i.e. the 

strong ground motion during a seismic event). Nevertheless, limited research work has been 



devoted to relating an evolutionary power spectrum (EPS) characterizing a non-stationary 

random process as defined by Priestley (1965) directly to a given response/design spectrum 

(e.g. Preumont 1985a, Spanos and Vargas Loli 1985 ). The main difficulty in this case, is that 

there are not reliable approximate expressions for the peak factor. Some previous studies (e.g. 

Corotis et al. 1972, Mason and Iwan 1983, Zembaty 1988, Senthilnathan and Lutes 1991, 

Michaelov et al. 2001, Morikawa and Zerva 2008) have provided numerical results associated 

with the peak response and the first passage problem of linear SDOF systems excited by non-

stationary input. However, the considered input EPSs have been arbitrarily selected as either 

modulated white noise, or colored noise having a boxcar envelop function (essentially 

dealing with the transient and not the non-stationary response). Obviously, these forms of 

EPSs do not correspond to non-stationary processes consistent with a particular seismic 

response spectrum. 

To circumvent the need to consider peak factors for non-stationary input processes, 

most research studies use an indirect two-step approach to address the issue of deriving 

simulated accelerograms compatible with a UHS (e.g. Gupta and Joshi 1993, Shrikhade and 

Gupta 1996, Crespi et al. 2002, Martinelli et al. 2011). First, a stationary power spectrum is 

“fit” to the target response spectrum, usually through an iterative procedure. Then, stationary 

time-histories compatible with the initially obtained power spectrum are generated and 

treated deterministically on an individual basis to assign certain non-stationary attributes 

similar to those observed in field recorded accelerograms. Alternatively, Cacciola (2010) has 

considered fitting the sum of two contributing processes to the UHS, namely a stationary 

power spectrum and a scaled time-frequency energy distribution of a single recorded seismic 

accelerogram using the spectral estimation method of Conte and Peng (1997). The 

aforementioned studies are useful in deriving small suites of design spectrum compatible 

accelerograms. However, they do not address the issue of obtaining a UHS compatible 



nonstationary stochastic process represented by an analytically defined EPS in a direct 

fashion. Note that such processes can be used in a straightforward manner for random 

vibration-based or for Monte Carlo simulation-based kinds of analysis for the design of 

structures regulated by specific codes of practice. 

In this regard, this study first adopts an inverse stochastic dynamics formulation 

originally proposed by Spanos and Vargas Loli (1985) to fit an analytically defined EPS 

directly to a given response spectrum.  This is accomplished in a non-iterative one-step 

manner by relying on the solution of a standard over-determined optimization problem. The 

latter involves the consideration of a peak factor to establish statistically the nature of 

compatibility between the EPS and the target spectrum. Non-constant median frequency-

dependent peak factors (median peak factor spectra) consistent with the given target spectrum 

are employed in the solution of the aforementioned problem. These peak factor spectra are 

derived numerically by a plethora of pertinent Monte Carlo analyses to circumvent the lack of 

a dependable semi-empirical expression as previously mentioned. Base-line corrected EPS 

compatible accelerograms are obtained by an efficient random field simulation technique to 

ensure that an acceptable level of compatibility of the derived processes with the target 

response spectrum in the mean sense is achieved. This is an issue of practical importance as 

common codes of practice mandate such a kind of compatibility with the UHS in representing 

the seismic action for analyses different than the response-spectrum based ones, as has been 

already discussed. Furthermore, the adopted parametric form of the EPS is, purposely, kept as 

simple as possible to be attractive for practical design purposes within a random vibration 

based or a Monte Carlo based kind of analysis. It contains enough “degrees-of-freedom” to 

accommodate a physically meaningful solution of the considered inverse stochastic dynamics 

problem. In particular, it involves a relatively simple deterministic time-varying envelop 



function modulating a stationary power spectrum expressed either by the Kanai-Tajimi (K-T) 

(Kanai 1957) or by the Clough-Penzien (C-P) (Clough and Penzien 1993) spectral form. 

It is emphasized that this work does not intend to address the issue of deriving small 

suites of design spectrum compatible accelerograms to be used for inelastic time-history 

analysis as mandated by aseismic code provisions for the case of certain kinds of structures. 

This topic has been extensively addressed in the published literature by the authors (Giaralis 

and Spanos 2009, Spanos et al. 2009) and by many other researchers already cited. Rather, its 

main objective is to demonstrate, by furnishing extensive numerical data, the potential of the 

adopted formulation combined with appropriately derived median peak factor spectra to 

obtain UHS compatible nonstationary stochastic processes in a direct manner without the 

need to further generate and treat samples of the underlying stochastic process individually 

on a deterministic basis. 

In what follows, a brief review of the mathematical background on the adopted 

formulation is included in section 2. Section 3 focuses on the Monte Carlo-based estimation 

of median peak factor spectra. These are used in conjunction with the adopted formulation to 

obtain non-stationary processes achieving enhanced compatibility with the target spectrum. 

The elastic UHS prescribed by the European EC8 (CEN 2004) code provisions is used as a 

paradigm of a target spectrum. Section 4 provides numerical evidence on the applicability of 

the adopted formulation to derive non-stationary processes with pre-specified “effective 

duration” as defined by Trifunac and Brady (1975). In this case the UHS prescribed by the 

Chinese GB 50011 (GB 50011 2001) code provisions is set to be the target spectrum. Section 

5 discusses in light of numerical data pertaining to both the EC8 spectrum and the GB 50011 

spectrum that the selection of an appropriate spectral depends on the definition of the “target” 

UHS in the region of relatively long periods. Finally, section 6 includes a summary of 



conclusions and remarks highlighting the practical merit of the proposed approach and of the 

herein reported numerical results. 

2. Mathematical Background  

To ensure the completeness of this paper, this section briefly reviews the adopted theoretical 

concepts and mathematical formulations used in deriving the numerical data presented in 

ensuing sections. More details on the herein considered formulation can be found in Spanos 

and Vargas Loli (1985) and in Giaralis and Spanos (2009).  

2.1.   Assumed time and frequency domain attributes of the sought stochastic processes  

Let the acceleration trace of the strong ground motion due to an earthquake be 

modeled as a realization of a modulated non-stationary stochastic process ug(t).  That is, 

 ( ) ( ) ( )gu t A t y t= , (1) 

where A(t) is a deterministic envelop function dependent on time t and y(t) is a zero-mean 

stationary stochastic process. For sufficiently “slowly-varying” envelop functions, the 

process ug(t) can be reliably represented in the domain of frequencies ω by a two-sided 

evolutionary power spectrum (EPS) G(t,ω) given by the expression (Priestley 1965) 

 ( ) ( ) ( )2
, , bG t A t Yω ω ω ω= ≤ , (2) 

where ωb is the highest frequency contained in the ug(t) process, and Υ(ω) is the power 

spectrum corresponding to the stationary process y(t). 

Herein, the envelop function given by the equation (Bogdanoff et al. 1961)  

 ( ) exp
2
btA t Ct −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3) 



is adopted to account for the time-varying intensity observed in typical field recorded 

accelerograms pertaining to historic seismic events.  In the above equation the parameter C is 

proportional to the intensity of the ground acceleration process.  Furthermore, the parameter b 

specifies the width of the envelop function and, thus, it controls the duration of the ground 

motion. For instance, it can be shown that the parameter b is related to the “significant 

effective duration” Teff defined by Trifunac and Brady (1975) as  

 95 05effT t t= − , (4) 

by means of the following system of non-linear equations (Spanos et al. 2009) 

 
( ) ( )
( ) ( )

2 2
95 95 95

2 2
05 05 05

2 2 exp 0.1

2 2 exp 1.9

b t bt bt

b t bt bt

⎧ + + − =⎪
⎨

+ + − =⎪⎩
. (5) 

In Eqs. (4) and (5) t05 and t95 denote the time instants at which the 5% and the 95% of the 

total energy of the acceleration process has been released, respectively. Note that although 

numerous definitions for the duration of strong ground motion based on field recorded 

accelerograms have been proposed in the literature (see e.g. Bommer and Martinez-Pereira 

1999, and references therein), the herein adopted one is commonly used by the structural 

engineering community (see e.g. Hancock and Bommer 2006).     

For the purposes of this study commonly used for earthquake engineering applications 

stationary power spectra are considered in conjunction with Eq. (2), namely, the Kanai-

Tajimi (K-T) spectrum given by the equation (Kanai 1957) 
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, (6) 



and the Clough-Penzien (C-P) spectrum given by the equation (Clough and Penzien 1993) 

 ( ) ( )
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. (7) 

These phenomenological models account for the influence of the surface soil deposits on the 

frequency content of the propagating seismic waves via the “stiffness” (ωg) and “damping” 

(ζg) parameters.  The C-P spectrum incorporates an additional high-pass filter whose cut-off 

frequency and “steepness” are determined by the parameters ωf and ζf.  This filter suppresses 

the low frequencies allowed by the K-T spectrum: a quite desirable property to realistically 

capture the frequency content exhibited by field recorded strong ground motions.  Further 

comments on the importance of selecting appropriately the spectral form of Y(ω) appearing in 

Eq. (2) for the purposes of this study are included in section 5 in light of pertinent numerical 

results. 

2.2.  Formulation and solution of the inverse stochastic dynamics problem 

Consider a linear quiescent unit-mass single-degree-of-freedom (SDOF) system, with ratio of 

critical viscous damping ζn and natural frequency ωn, base-excited by the acceleration process 

ug(t). The relative displacement response process x(t) of this system with respect to the 

motion of its base is governed by the equation 

 

( ) ( ) ( ) ( )22 n n n gx t x t x t u tζ ω ω+ + = − , (8) 

in which a dot over a symbol denotes time differentiation and zero initial conditions are 

assumed. Focusing on lightly damped systems (i.e. ζn<0.1), the response x(t) is assumed to be 

a narrow-band process. In this case the time-evolving variance 2
xσ  of the response process 



x(t) can be reliably approximated by the variance 2
aσ  of its amplitude (e.g. Spanos 1978). 

The latter quantity can be expressed by the following equation (Spanos and Lutes 1980)   

 

( ) ( ) ( ) ( )2
2

0

, , , exp 2 exp 2 ,
t

a n n n n n n n
n

t G t G dπσ ω ζ ζ ω ζ ω τ τ ω τ
ω

= − ∫ . (9) 

Given an EPS G the “forward” problem of deriving a relative displacement response 

spectrum Sd(ωn, ζn, G) associated with this EPS can be formally expressed by the equation 

 ( ) ( ){ }, , maxd n n t
S G x tω ζ = . (10) 

However, in the practice of aseismic design of structures often only a relative displacement 

elastic response spectrum Sd(ωn, ζn) is provided to the designer for the definition of the input 

seismic severity. In relating the latter spectrum to an EPS G(t,ω) defined by Eq. (2) an 

“inverse” stochastic dynamics problem must be considered. Following Spanos and Vargas 

Loli (1985), this problem can be formulated by relying on the equation (see also Giaralis and 

Spanos 2009) 

 ( ) ( ) ( ){ }, , , , max , , ,d n n n n a n nt
S r G p t Gω ζ ω ζ σ ω ζ= . (11) 

In the above equation the so-called “peak factor” r is the critical parameter establishing the 

equivalence between the given response spectrum Sd and the EPS G to be determined in a 

statistical manner (see e.g. Vanmarcke 1976). The peak factor corresponds to the scalar by 

which one needs to multiply the peak standard deviation of the response amplitude (assumed 

to be equal to the peak standard deviation of the response process x) attained at some time 

instant tmax var to reach a certain peak response level Sd with probability p. Thus, provided the 

variance 2
aσ  in Eq. (9) can reliably approximate the variance of the response process x(t), the 

achieved level of compatibility of the process ug(t) with any given response spectrum relies 

significantly on the choice of the peak factor r. In case the given (target) spectrum is a 



uniform hazard spectrum (UHS), as commonly prescribed by aseismic codes of practice, then 

Sd in Eq.(11) needs to be treated as the “median response spectrum”. In this respect, Eq. (11) 

establishes the following criterion: considering an ensemble of non-stationary samples 

compatible with G (i.e. generated as described in the following section 2.3), half of the 

population of their response spectra will lie below Sd (Vanmarcke 1976). To fulfill this 

criterion a “median” peak factor corresponding to p= 0.5 needs to be considered which 

requires knowledge of the probabilistic structure of r. However, the peak factor is a quantity 

associated with the first passage problem of stochastically excited linear SDOF systems 

exposed to uniformly modulated input processes for which no closed solution exists. To this 

end, Monte Carlo simulations for input EPSs compatible with specific UHS are undertaken to 

define appropriate median peak factors to be used in the solution of Eq. (11). Further 

discussion on this issue is included in following sections in light of pertinent numerical 

results. 

Once a specific value for the peak factor and a parametric form for the EPS G are 

assumed, an approximate point-wise solution of the inverse problem of Eq. (11) can be 

obtained by minimizing the error (Giaralis and Spanos 2009) 

 ( )
2 2

1

M

j j
j

e S q
=

= −∑ , (12) 

at a certain set of M natural frequencies {ωn(j)}for j= 1,…,M. In the above equation the 

quantities Sj and qj are given by the formulae 
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and 
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respectively, where ( )2j n n j bγ ζ ω= − and tj
*  is the time instant at which the variance ( )2

a tσ   

corresponding to the linear SDOF system with natural frequency ωn(j) is maximized. In all of 

the ensuing numerical results, a Levenberg-Marquardt algorithm with line search (see e.g. 

Nocedal and Wright 1999), implemented in the built-in function ‘lsqcurvefit’ available in 

MATLAB® is used to solve the set of 2M non-linear equations defined by Eqs. (12)~(14). In 

this context, the herein considered inverse stochastic dynamics problem is treated as a 

nonlinear least-square fit optimization problem.  The unknowns to be determined are the M tj
* 

time instants and the parameters involved in the definition of the EPS form: four in the case 

of the K-T spectrum (C, b, ωg, ζg) or six in the case of the C-P spectrum (C, b, ωg, ζg, ωf, ζf). 

In a practical numerical implementation, the number of the frequencies M can always be set 

such that the aforementioned optimization problem is over-determined and thus readily 

solvable. Furthermore, it is pointed out that the parameter b can either be treated as an 

unknown “free” parameter to be determined by the optimization algorithm, or it can be held 

fixed at a predefined value corresponding to a specific effective duration. In this way, the 

optimization algorithm is “forced” to yield an EPS corresponding to a non-stationary process 

of specific duration.  Additional comments along with numerical results on this issue are 

included in section 4. 

2.3. Spectrum compatible random field simulation for Monte Carlo analysis 

Upon determination of the parameters defining the EPS G as detailed in the previous 

section, one can employ a random field simulation technique to generate samples of the 



underlying non-stationary process compatible with this EPS. These samples can be viewed as 

artificial acceleration time-histories (accelerograms). Such accelerograms can be numerically 

generated by first synthesizing stationary discrete-time signals as sampled versions of the 

continuous-time stochastic process y(t) appearing in Eq. (1). That is, 

 
[ ] ( ) , 0,1,...,sy s y sT s N= = , (15) 

where Ts is the sampling interval which must be equal to, at least, π/ωb to avoid aliasing 

according to the well-known Nyquist criterion and N should be selected appropriately so that 

A(NTs) attains a negligible non-zero value. Next, these stationary records are multiplied 

individually by the corresponding discrete/sampled version of the envelop function defined in 

Eq. (2) to obtain the final artificial records with non-stationary intensity as Eq. (1) suggests. 

In this study, stationary discrete-time signals [ ]y s  are synthesized by filtering arrays of 

discrete-time Gaussian white noise w[s] with a two-sided unit-intensity power spectrum 

band-limited to ωb through an autoregressive-moving-average (ARMA) filter of order (m,n). 

In a practical numerical implementation setting these arrays comprise pseudo-random 

numbers belonging to a Gaussian distribution with zero mean and variance equal to 2 bω . 

The aforementioned filtering operation is governed by the difference equation 

 
[ ] [ ] [ ]

1 0

m n

k l
k l

y s d y s k c w r l
= =

= − − + −∑ ∑ , (16) 

in which cl (l=0,1,…,n) and dk (k= 1,…,m) are the ARMA filter coefficients. Herein, the 

auto/cross-correlation matching (ACM) method is adopted to determine these coefficients so 

that the power spectrum of the process [ ]y s  matches the CP spectrum Y(ω) of the process 

y[s]. In this manner, the process [ ]y s  can reliably model the process y[s]. The mathematical 

details of the ACM method can be found in Spanos and Zeldin (1998). 



The time-histories generated as discussed above are further processed to address the 

issue of baseline correction. This is accomplished efficiently by appropriate zero-padding and 

forward/backward filtering of the records using a standard Butterworth high-pass filter of 

order 4 and cut-off frequency 0.10Hz (see e.g. Boore 2005, Giaralis and Spanos 2009).   

It is noted, in passing, that the herein presented simulation technique is considered in 

the following sections solely for the purpose of deriving peak factors in a Monte Carlo based 

analyses and to assess the quality of compatibility achieved between the nonstationary 

processes represented by the considered EPSs with the given response spectrum. The 

simulation of individual samples is not part of the considered approach for deriving response 

spectrum compatible processes. 

 

3. Application to the EC8 elastic design spectrum 

This section considers the elastic (uniform hazard) response spectrum prescribed by the 

European aseismic code provisions (EC8) (Eq. (A.1) of the Appendix A) as a paradigm to 

demonstrate that the consideration of frequency and damping dependent median peak factor 

spectra in the solution of the inverse stochastic formulation discussed in section 2.2 yield 

non-stationary processes achieving excellent compatibility with the target UHS. In all the 

numerical work of this section, the C-P spectral form given by Eq. (7) is considered in 

minimizing the error defined in Eq. (12). Furthermore, the b parameter involved in the 

definition of the envelop function in Eq. (3) is treated as a “free” parameter. 

3.1. Peak factor estimation via Monte Carlo analysis  

 



As it has been already discussed in section 2.2, in case a UHS is set as the target 

spectrum, the desired level of compatibility between this spectrum and the sought stochastic 

process can be theoretically achieved by considering the median peak factor. Given that no 

dependable analytical expression is available for this quantity, comprehensive Monte Carlo- 

based analyses are conducted to derive natural frequency and damping dependent peak 

factors (peak factor spectra) for uniformly modulated C-P processes compatible with the EC8 

response spectrum. Specifically, C-P evolutionary power spectra (EPSs) compatible with the 

EC8 spectrum for peak ground acceleration (PGA) of 0.36g (g= 9.81 m/sec2), for three 

different damping ratios ζn= 2%, 5%, and 8% and for all five soil conditions prescribed by the 

EC8 are considered: a total of 15 EPSs. These have been obtained as discussed in section 2.2 

assuming a constant peak factor r= (3π/4)1/2 (see also Giaralis and Spanos 2009). For each of 

the thus obtained EPSs a suite of 10000 spectrum-compatible non-stationary artificial 

accelerograms are generated and base-line adjusted as described in section 2.3. Next, each 

suite is “fed” to a series of 200 linear SDOF systems with natural periods ranging from 0.02s 

to 6s. The damping ratio of these systems is set to coincide with the value of ζn considered in 

deriving each of the EPS from the corresponding EC8 spectrum. For every such system 

defined by the properties Tn= 2π/ωn and ζn and excited by a specific suite of accelerograms 

the response ensembles (x(k)(t); k=1,2,…,10000) are calculated via numerical integration of 

Eq. (8) (Nigam and Jennings 1969). Finally, populations of peak factors (r(k); 

k=1,2,…,10000)  are computed from the above ensembles as the ratio of the population of 

peak responses over the maximum averaged standard deviation of the response ensemble. 

That is, 

 
( ) ( )

( ) ( ){ }
( ) ( )( ){ }2

max , , ,
, ,

max mean , , ,

k
n nk t

n n
k

n nt k

x t T G
r T G

x t T G

ζ
ζ

ζ
=

⎧ ⎫
⎨ ⎬
⎩ ⎭

. (17) 



It is important to note that these peak factor populations are independent of the intensity of 

the excitation. Thus, they are neither influenced by the adopted PGA value assumed in the 

derivation of the 15 considered EPSs nor by the adopted constant peak factor value r= 

(3π/4)1/2  involved in this derivation. However, they do reflect the different spectral contents 

and effective durations (as controlled by the b parameter of Eq. (3)) of the considered EPSs. 

In the course of computing the denominator of Eq. (17) two quantities need to be 

considered. The first quantity is the peak value of the time-evolving mean square of the 

response ensembles. This value approximates numerically the peak variance max{ 2
xσ } since 

the simulated signals are base-line corrected to be zero-mean. The second quantity is the time 

t= tmax var at which this peak value is attained. Fig. 1 provides plots of both of these quantities 

as functions of the natural period of the SDOF systems considered for damping ratio ζn= 5% 

for the five EC8 soil types. The spectral shapes of the variance in Fig. 1(a) are comparable to 

the EC8 displacement response spectrum plotted in Fig. 12 of the Appendix. Moreover, as 

more flexible oscillators are considered the maximum response variance is reached at later 

times. Similar trends have been observed for the obtained data corresponding to ζn= 2% and 

8%, not included here for brevity. 

 



Fig. 1: Peak variances and time instants at which these peak values are attained for response 
ensembles pertaining to EC8 spectrum compatible EPSs for PGA= 0.36g and ζn= 5%. 

 

Note that in the solution of the stochastic dynamics problem of section 2.2 the 

variance of the response amplitude 2
aσ  and the time t* at which this is maximized have been 

considered instead of the corresponding 2
xσ  and tmax var quantities, respectively. Fig. 2 

provides indicative data to assess the validity of these considerations in view of the herein 

considered simulated data. In particular, Fig. 2(a)~(f) plots the time dependent response 

variances of various oscillators for input EPSs compatible with the EC8 spectrum for soil 

types B and C and for ζn=5%. The gray lines ( ( )2
x tσ ) are obtained from the simulated 

response time-histories while the black lines are computed from the analytical expression  
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where 2 n n bγ ζ ω= − . The latter expression is obtained by substitution of Eqs. (2) and (3) in 

Eq. (9). It is observed that better agreement between the simulated and the analytical data is 

achieved for stiffer oscillators. Still, the overall quality of the agreement is acceptable for the 

range of natural periods of practical interest for earthquake engineering applications.  Similar 

conclusions are drawn by examining the data plotted in Fig. 2(g)~(k) pertaining to the 

aforementioned EC8 compatible EPSs. In the latter plots, the Monte Carlo-based results for 

soil B and C types included in Fig. 1(a) and Fig. 1(b) are compared with the peak response 

amplitude, given analytically by the equation 
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and with the time instants t* satisfying the condition 



 
( ) ( ) ( )2 * *2 * *2 2 1 2 4 exp 0nt bt bt b tγ γ ζω γ− − − − + − = , (20) 

respectively. The condition of Eq. (20) is reached by setting the first time derivative of Eq. 

(18) equal to zero, while Eq. (19) is derived by applying the above condition in Eq. (18) and 

by making use of Eqs. (2) and (3). Similar level of matching between simulated and 

analytical data as those observed in Fig. 2 is achieved for all 15 EC8 compatible EPSs 

considered in the undertaken Monte Carlo analyses. The good agreement between the 

simulated data with the corresponding analytical expressions confirms that the assumptions 

made in formulating the stochastic dynamics problem of section 2.2 are valid for the purposes 

of this work. 



 

Fig. 2: Time-evolving response variances (panels (a)~(i)), peak response variances (panels 
(g) and (i)), and time instants at which these peak values are attained (panels (j) and (o)) of 
various oscillators for input EC8 compatible EPSs (PGA= 0.36g; ζn=5%; Soils B, C and D). 



Furthermore, the computation of the numerator in Eq. (17) involves the calculation of 

the time instants tmax|x| at which the peak value of each response time-history is attained. In 

Fig. 3, certain plots associated with the statistical properties of the tmax|x| populations 

normalized by the tmax var time instants for EC8 compatible input EPSs with ζn=5% are shown. 

Specifically, Fig. 3(a) and Fig. 3(b) plot the average and standard deviation, respectively, of 

these populations for all EC8 soil conditions as a function of natural period (mean and 

standard deviation spectra). The mean spectral values fluctuate around unity with small 

dispersion for all soil types, although a noticeable trend of linear decrease towards the longer 

periods exists. This result agrees with the intuition which suggests that the time instants at 

which the peak response and the peak response variance are obtained should be in a close 

agreement, on the average. Nevertheless, the standard deviation spectra reveal that there is a 

significant dispersion in the population of the samples (10000 for each oscillator). To further 

elucidate this point, six histograms of such populations related to certain oscillators and the 

corresponding fitted gamma distributions (solid lines) are included in Fig. 3. It was found that 

the gamma distribution yielded the best parametric fitting results based on a standard 

maximum likelihood estimation algorithm. Note that the gamma distribution of a positive 

valued random variable z reads 
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where Γ(·) denotes the standard gamma function and κ, θ are the “shape” and “scale” 

parameters, respectively. Similar results as those reported in Fig. 3 have been observed for 

response ensembles corresponding to ζn=2% and 8%. 



 

Fig. 3: Mean value spectra (panel (a)), standard deviation spectra (panel (b)), and histograms 
(panels (c)~(h)) of populations of ratios tmax |x| / tmax var for response ensembles pertaining to 

EC8 spectrum compatible EPSs for PGA= 0.36g and ζn= 5%. 

 

Similar statistical results as those presented in Fig. 3 are collected in Fig. 4 

corresponding to peak factor populations calculated by Eq. (17). In particular, the median of 

the peak factors plotted against the natural period (median peak factor spectra) for all the EC8 

soil conditions (ζn= 5%) are shown in Fig. 4(a). Evidently, the median peak factor possesses a 

complicated dependence with the natural period of linear SDOF oscillators. Interestingly, 

similar trends have been previously reported in the literature (see e.g. Vanmarcke 1976). 

From a practical viewpoint, the most important conclusion drawn from Fig. 4(a) is that the 



five curves lie very close to each other. This means that the various shapes of the EC8 

spectrum corresponding to different soil conditions (Fig. 12 in the appendix) reflecting on the 

considered EPSs have a minor effect on the median peak factor spectrum (see also Spanos et 

al. 2009). This fact facilitates significantly the derivation of EPSs compatible with the EC8 

spectrum in the average statistical sense as discussed in the next sub-section. Note that this 

observation is valid when treating b as a “free” parameter in deriving the EC8 compatible 

EPSs. The case where b is predefined to yield processes of a pre-selected effective duration is 

discussed in section 4. 

 

Fig. 4: Median spectra (panel (a)), standard deviation spectra (panel (b)), and histograms 
(panels (c)~(h)) of populations of ratios tmax |x| / tmax var for response ensembles pertaining to 

EC8 spectrum compatible EPSs for PGA= 0.36g and ζn= 5%. 

 



Focusing on the standard deviation of the peak factor populations shown in Fig. 4(b) 

it is noted that it is certainly non-negligible and that it varies for natural periods up to 1s 

approximately. For higher periods, it practically attains a constant value. For the sake of 

completeness, histograms of peak factor populations have been also included in Fig. 4 related 

to the same oscillators and input EPSs as in Fig. 3. Generalized extreme value distributions 

given by the equation 
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have been fitted to these histograms (solid lines). In the above equation μ corresponds to the 

“center of mass” of the population, σ is a “spread” factor and ξ is the “shape” factor, while 

the expression inside the parenthesis is always positive. Note that in all cases examined the 

value of parameter ξ is negative. This corresponds to a “type III” extreme value distribution 

of the Weibull kind (e.g. Kotz and Nadarajah 2000). It is further reported that similar 

statistical analyses of the peak factor populations of the response ensembles for EPSs 

corresponding to ζn=2% and 8% has yielded the same observations and conclusions as those 

for ζn=5%. Thus, the inclusion of numerical results from these analyses has not been deemed 

essential. 

 

3.2. EC8 compatible median peak factor and evolutionary power spectra 

As it has been already alluded in the paper, median peak factor spectra are required to 

be used in the herein adopted formulation for the purpose of deriving non-stationary 

processes compatible with a response spectrum in the mean sense. Notably, as discussed in 

the previous sub-section, the median peak factor spectra computed from ensembles of EC8 

spectrum compatible EPSs are relatively insensitive to the shape attained by the EC8 



spectrum for different soil conditions. Therefore, it is reasonable to consider the average of 

the median peak factor spectra for the various soil conditions of EC8 for each value of the 

damping ratio herein considered. Further, polynomial curve fitting is applied to the above 

averaged median peak factor spectra to obtain an analytical expression to approximate the 

numerically derived median peak factors. The 8th-order polynomials plotted in Fig. 5 and 

expressed by the equation for Q= 8 
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approximate reasonably well the averaged median peak factor spectra for periods up to 6s. 

The coefficients pj of these polynomials are given in Table 1. For oscillators of natural 

periods longer than 6s a constant peak factor of ( )ˆ 6r r=  can be utilized.  

 

Fig. 5: Polynomial fit to EC8 compatible median peak factor spectra for various levels of 
damping ζn. 

 

Table 1: Coefficients of the fitted polynomials to the averaged numerically obtained median 
peak factor spectra of Fig. 5. 

 p0 p1 p2 p3 p4 p5 p6 p7 p8 

ζn= 2% 3.3079 -4.9375 8.3621 -8.3368 5.0420 -1.8983 0.4469 -0.0639 0.0051 

ζn= 5% 3.1439 -3.9836 5.9247 -5.3470 2.9794 -1.0439 0.2305 -0.0311 0.0023 

ζn= 8% 2.9806 -3.2070 4.1190 -3.1733 1.4746 -0.4144 0.0689 -0.0062 0.0002 



 

Table 2 reports the parameters defining C-P EPSs compatible with the EC8 spectrum 

for PGA= 0.36g, damping ratio 5%, and for all soil conditions obtained by minimizing the 

error of Eq. (12) using the frequency-dependent averaged median peak factor spectrum r̂  of 

Eq. (23) for ζn= 5%. Moreover, in Fig. 6 median pseudo-acceleration response spectra for 

ensembles of 100 baseline-corrected artificial accelerograms compatible with the C-P spectra 

of Table 2 for soil types B and C are plotted along with the corresponding (target) EC8 

spectrum. Furthermore, the average, largest, and smallest spectral ordinates are also included 

to demonstrate the statistical nature of the considered data. Evidently, a satisfactory matching 

of the average response spectra of the generated signals with the target spectrum is attained 

which is in alignment with the compatibility criterion of Eq. (11) for p= 0.5.  To demonstrate 

the influence of adopting appropriate values for the peak factor to achieve an acceptable level 

of matching as defined above, average pseudo-acceleration response spectra for ensembles of 

100 baseline-corrected artificial accelerograms compatible with C-P EPSs derived by 

assuming a constant peak factor equal to (3π/4)1/2, are superimposed in Fig. 6. Clearly, the 

use of the non-constant frequency dependent peak factors derived by the Monte Carlo 

analyses discussed in the previous sub-section improves significantly the quality of the 

pursued average matching compared to that achieved via a constant peak factor as previously 

considered in Giaralis and Spanos (2009). The significant discrepancy of the average 

response spectra obtained under the assumption of a constant peak factor (3π/4)1/2 from the 

target EC8 spectrum can be readily justified by considering the deviation of the averaged 

median peak factor spectrum from the constant level of (3π/4)1/2 shown in Fig. 5. 

 

 



Table 2: Parameters for the definition of C-P evolutionary power spectra compatible with 
various EC8 spectra (ζn= 5%) using the median peak factor spectra of Eq. (23)  

Peak ground 
acceleration 

Soil 
type 

CP power spectrum parameters [Tmin= 0.02, Tmax= 10] (s) 
C 

(cm/sec2.5) 
b 

(1/sec) ζg 
ωg 

(rad/sec) ζf 
ωf 

(rad/sec) 

αg= 0.36g 
(g= 981 
cm/sec2) 

A 8.08 0.47 0.54 17.57 0.78 2.22 
B 17.76 0.58 0.78 10.73 0.90 2.33 
C 19.58 0.50 0.84 7.49 1.15 2.14
D 30.47 0.50 0.88 5.34 1.17 2.12 
E 20.33 0.55 0.77 10.76 1.07 2.03 

 

Fig. 6: Pseudo-acceleration response spectra of ensembles of 100 simulated accelerograms 
compatible with C-P evolutionary power spectra derived by assuming a constant peak factor 

of (3π/4)1/2 and the frequency-dependent peak factor of Eq. (23). 

 



4. Derivation of response spectrum compatible processes of specific effective duration  

In this section the applicability of the stochastic formulation reviewed in section 2.2 to 

yield response spectrum compatible non-stationary processes of a prescribed effective 

duration (Teff) as defined by Trifunac and Brady (1975) is assessed. This is accomplished by 

utilizing the one-to-one relation established by Eqs. (4) and (5) between Teff  and the b 

parameter appearing in Eq. (3). The latter parameter is then treated as a constant in solving 

the inverse stochastic dynamics problem as detailed in section 2.2.  The elastic response 

spectrum prescribed in the current aseismic code provisions effective in China (GB 50011 

2001) for a fixed 5% ratio of critical damping is used as a paradigm of a target response 

spectrum (Eq. (A.2) of the Appendix). The K-T spectral form of Eq. (6) is assumed in the 

definition of the sought response spectrum compatible EPS (see also Spanos et al. 2009).  

Similar Monte Carlo analysis, as discussed in the previous section, is conducted to 

estimate median peak factor spectra to achieve enhanced agreement between the target GB 

50011 spectrum and the average response spectrum of populations of EPS compatible 

accelerograms. To this aim, K-T evolutionary power spectra (EPSs) compatible with the GB 

50011 spectrum, for three different values of the b parameter, and for all the 14 values of the 

characteristic period Tg as prescribed in GB 50011 (see also Eq. (A.3) of the Appendix A) are 

considered: a total of 42 EPSs. These spectra have been derived by assuming a constant value 

for the peak factor while the b parameter has been taken equal to 0.30s-1, 0.40s-1, and 0.50s-1 

corresponding to effective durations of approximately 18s, 14s, and 11s, respectively.  

The thin black lines shown in Fig. 7 are the median peak factor spectra corresponding 

to the considered 42 GB 50011 compatible K-T EPSs. These spectra have been obtained from 

peak factor populations computed by Eq. (17) following the same procedure used to derive 

the spectra shown in Fig. 4a. That is, response time-history ensembles of 200 oscillators with 

different natural periods between 0.02s and 6s (ζn is now fixed to 5%) have been utilized. 



These oscillators have been driven by suites of 10000 accelerograms, each suite being 

compatible with a certain GB 50011 compatible K-T EPS. Notably, the thus derived median 

peak factor spectra corresponding to the same value of the b parameter (i.e. to the same 

effective duration) are closely clustered together. This suggests that the effective duration of 

the considered non-stationary uniformly modulated processes has a non-negligible influence 

on the peak factors: longer duration yields higher peak factor values. This observation is in 

alignment with what has been found for the case of finite-duration stationary processes (i.e. 

stationary processes modulated in the time-domain by a rectangular window), by various 

researchers (e.g. Vanmarcke 1976, Zembaty 1998, Sarkani et al. 2001). Furthermore, the 

aforementioned “clustering” of the median peak factor spectra suggests that the variation of 

the spectral content of the considered processes reflecting the different shapes of the GB 

50011 spectrum dependent on the Tg (see Fig. 12 of the Appendix), has a minor effect on the 

peak factor values. Importantly, this has been the case for the median peak factor spectra 

compatible with the different shapes of the EC8 spectrum as well (see Fig. 4a). Thus, 

following a similar reasoning as in section 3.2, it is of practical interest to consider the 

average of the median GB 50011 compatible peak factor spectra for each value of the b 

parameter and to fit polynomial curves. In this manner, approximate analytical expressions 

for median GB 50011 compatible peak factor spectra corresponding to specific effective 

durations of the underlying strong ground motion are reached. Acceptable fit to the average 

of the considered median peak factor spectra is achieved by 7th-order polynomials expressed 

by Eq.(23) for Q=7 and plotted in Fig. 7:  The coefficients of these polynomials are reported 

in Table 3. 



 

Fig. 7: Median peak factor spectra compatible with the GB 50011 spectrum (thin black 
lines) and fitted average median peak factor spectra given by Eq. (23) for Q=7 (thick gray 

lines), for various values of the b parameter. 

Table 3: Coefficients of the fitted polynomials to the averaged numerically obtained median 
peak factor spectra of Fig. 7. 

 p0 p1 p2 p3 p4 p5 p6 p7 
b= 0.30s-1 

(Teff≈ 18s) 3.2452   -2.8625 3.1451   -1.9687 0.7003 -0.1404   0.0148   -0.0006   

b= 0.40s-1 

(Teff≈ 14s) 3.1711   -3.0196 3.4074   -2.1573 0.7724   -0.1556   0.0164   -0.0007   

b= 0.50s-1 

(Teff≈ 11s) 3.1012 -3.1086 3.5941 -2.3085 0.8361 -0.1702 0.0181 -0.0008 

 

Table 4 includes K-T EPSs compatible with the GB 50011 spectrum for αmax= 1.20g 

and Tg=0.70s corresponding to two different effective durations. These spectra have been 

derived by minimizing the error defined in Eq. (12) treating the b parameter as a constant and 

using the fitted average median peak factor spectra shown in Fig. 7: for b= 0.30s-1 and b= 

0.50s-1, respectively. As expected, the value of the C parameter related to the amplitude of the 

adopted envelop function (Eq. (3)) is significantly larger for the EPS corresponding to the b= 

0.50s-1 due to the reduced duration of the underlying non-stationary process compared to the 

b=0.30s-1 case. However, the ζg and ωg parameters associated with the spectral content of the 

two non-stationary processes considered do not change significantly. In Fig. 8 average 



pseudo-acceleration response spectra for ensembles of 500 baseline-corrected artificial 

accelerograms compatible with the EPSs of Table 4 are plotted along with the GB 50011 

target spectrum. These average response spectra lie close to each other indicating that the two 

non-stationary processes, though of significantly different effective duration, are consistent in 

terms of peak response accelerations. To further illustrate this point arbitrarily chosen 

individual realizations compatible with the aforementioned EPSs are also included in Fig. 8 

along with their response spectrum.  

Table 4. K-T evolutionary power spectra compatible with the GB 50011-2001 design 
spectrum (Tg=0.70s; αmax= 1.20g) for specific effective durations. 

EPS Parameter 
(units)  

(b=0.30s-1) 
Teff≈18s 

(b=0.50s-1) 
Teff≈ 11s 

C(cm/s2.5) 11.33 21.11 
b(1/s) 0.30 0.50 
ζg 0.83 0.88 

ωg(rad/s) 7.89 7.57 
 

 

Fig. 8: Response spectra and time-histories of accelerograms of different effective durations 
compatible with the K-T evolutionary power spectra of Table 4. 

 

Moreover, it is noted that both the average response spectrum curves included in Fig. 

8 are in a close agreement with the target design spectrum. Similar results, not included here 

for brevity, have been obtained for other GB 50011 shapes and values of effective duration.  

In this regard, it can be argued that the EPSs derived by solving the herein adopted inverse 



stochastic dynamics problem discussed in section 2.2 in conjunction with appropriately 

derived duration-dependent peak factor spectra can be used for structural aseismic design 

scenarios mandating the consideration of strong ground motions of specific duration (see e.g. 

Hancock and Bommer 2007). 

 

5. Selection of the frequency content of the evolutionary power spectrum 

In previous sections the influence of the peak factor and of the width of the envelop 

function of Eq.(3) in deriving response spectrum compatible non-stationary processes by 

minimizing the error in Eq. (12) has been addressed. However, the feasibility of achieving a 

numerical solution to this optimization problem relies further on choosing an appropriate 

parametrically defined spectral form for the stationary power spectrum Y(ω) in Eq. (2). In 

particular, it appears that this choice depends on the behavior of the target response spectrum 

in the range of long periods (Giaralis and Spanos 2009). In fact, this is the reason why in the 

previous sections different parametric forms for Y(ω), namely the C-P (Eq. (7)) and the K-T 

(Eq. (6)), have been a priori considered to “fit” the considered EC8 and GB 50011 response 

spectra, respectively. 

 To further discuss this point, the EC8 spectrum for αg=0.25g and soil conditions B 

(see Eq. (A.1) of the Appendix) and the GB 50011 spectrum for αmax=1.20g and Tg=0.40g 

(see Eq. (A.2) of the Appendix) are considered for comparison (ζn=5%). These two target 

spectra are plotted in Fig. 9 in terms of pseudo-acceleration and relative displacement spectral 

ordinates. It is seen that they are characterized by radically different behavior for periods 

longer than T>2s. Specifically, the GB 50011 relative displacement spectrum increases 

monotonically for T>5Tg= 2s. This is because GB 50011 poses rather conservative (high) 

demands in terms of structural strength for flexible structures by prescribing a slow (linear) 

rate of decay to the last segment of the pseudo-acceleration spectral ordinates defined for 



T>5Tg in Eq. (A.2). Arguably, the main reason for this consideration is to account for the 

contribution of higher modes which become important for flexible structures (e.g. mid-to-

high-rise buildings), in the context of simplified response spectrum-based kinds of analysis 

relying considering only the first (fundamental) mode of vibration (e.g. Newmark and Hall 

1982). However, this definition of the response spectrum does not comply with the theory of 

structural dynamics suggesting that the maximum deformation of very flexible seismically-

excited SDOF oscillators is equal to the peak ground displacement (e.g. Chopra 2001). 

Consequently, it poses certain numerical difficulties in solving the inverse dynamics problem 

discussed in section 2.2. These difficulties are partly circumvented by adopting a spectral 

form Y(ω) rich in low frequencies. The K-T spectrum of Eq. (6) defines such a spectral form 

and has been successfully used in the previous section as a mathematical instrument to 

accommodate the GB 50011 spectrum within the context of the herein adopted formulation. 

Note, however, that the low-frequency content allowed by the K-T spectrum is regarded as 

“spurious” as it is not in alignment with what is observed in field recorded accelerograms.  

Nevertheless, the response spectrum of the EC8 is characterized by a behavior in the 

range of long periods which captures better the physics of the underlying structural dynamics 

problem (e.g. Faccioli et al. 2004). In fact, the EC8 pseudo-acceleration spectrum drops at an 

exponential rate for T>2s in such a manner so that the corresponding relative displacement 

spectrum attains a constant value for very flexible oscillators. This attribute allows for 

utilizing phenomenological models to represent more realistically the low-frequency content 

of the strong ground motion than the K-T spectrum, such as the C-P spectrum given by Eq. 

(7).  



 

Fig. 9: EC8 (αg=0.25g; soil B) and GB 50011 (αmax=1.20g; Tg=0.40g) response spectra and 
point-wise least square matching. 

 

Pertinent numerical results are included in support of the aforementioned comments 

illustrating the applicability of the adopted methodology to derive EPSs compatible with the 

considered response spectra. To this aim, Table 5 presents a K-T EPS and a C-P EPS 

compatible with the GB 50011 and the EC8 spectra plotted in Fig. 9. These EPSs have been 

derived by minimizing Eq. (13) treating b as a “free” unknown parameter and using the 

median peak factor spectra plotted in Fig. 10. The latter spectra have been derived as detailed 

in the previous sections. The quality of the point-wise matching achieved in solving the 

optimization problem is depicted via the dots included in Fig. 9 (see also Giaralis and Spanos 

2009 and Spanos et al. 2009). These points correspond to the set of {ωn(j)} considered in Eqs. 

(13) and (14). As it has been previously reported in Spanos et al. (2009) if point-wise 

matching is pursued to include values of ωn(j) for periods beyond 6.5Τg in the GB 50011 case 

the optimization algorithm fails to converge to an acceptable solution.  This is due to the 

aforementioned behavior of the GB 50011 relative displacement spectra which does not 

converge to a constant value.  However, in the EC8 case, the assumed C-P spectral form is 

able to trace the target spectrum in a point-wise manner to much higher natural periods.   

Table 5. Evolutionary power spectra compatible with the target spectra of Fig. 9. 



EPS Parameter 
(units)  

C-P (EC8) 
(soil B;αg=0.25g)    

K-T (GB 50011) 
(Tg=0.40g;αmax=1.20g) 

C(cm/s2.5) 10.16 17.37 
b(1/s) 0.54 0.50 
ζg 0.65 0.72 

ωg(rad/s) 12.76 15.67 
ζf 0.85 - 

 ωf(rad/s) 2.15 - 
 

 

Fig. 10: Median peak factor spectra for ζ= 5% compatible with the EC8 and the GB 50011 
response spectra. 

 

Interestingly, the differences in the frequency content of the assumed spectral forms 

(C-P and K-T) to accommodate the different target response spectra further influence the 

shape of the corresponding median peak factor spectra.  This is seen in Fig. 10: the median 

peak factor spectra corresponding to C-P and K-T spectral forms coincide for periods up to 

2s.  For longer periods the EC8 compatible peak factors attain a constant value, while the GB 

50011 peak factor spectrum is monotonically decreasing. 

Finally, in Fig. 10 statistics of response spectra of 500 accelerograms compatible with 

the K-T and the C-P EPSs of Table 5, are compared with the respective target spectra. In both 

cases, enhanced agreement between the average response spectrum and the target spectrum 

for periods up to about 5Tg= 2s is achieved. For the C-P spectrum compatible accelerograms 

the quality of this agreement remains the same for T>2s which is not the case for the K-T 



compatible accelerograms whose average spectral ordinates fall short of the GB 50011 

spectrum. This result confirms numerically that the GB 50011 code poses rather high 

demands on flexible structures that even the K-T spectrum cannot accommodate in the region 

of periods higher than 5Tg defining the corner period at which the last branch with the rather 

steep inclination of the target GB 50011 spectrum shown in Fig. 9 begins. As a final remark, 

it is noted that, if desired, spectral matching of the generated accelerograms in the T>5Tg 

region can be accomplished by treating each sample separately using the various spectral 

matching approaches found in the literature (see e.g. Giaralis and Spanos 2009 and references 

therein). A frequency domain approach relying on the harmonic wavelet transform has been 

applied for this purpose in Spanos et al. (2009) to treat both artificial and field recorded 

accelerograms. However, it can be argued that such long fundamental periods are expected to 

be exhibited by “special” structures (e.g. base isolated buildings, long-span bridges etc.). The 

design of such structures would most probably involve considering site-specific response 

spectra and/or carefully selected field recorded accelerograms, rather than the uniform hazard 

code-specific spectra considered herein.  

 

Fig. 11: Statistics of response spectra of an ensemble of 500 simulated accelerograms 
compatible with the EC8 and the GB 50011-2001 spectra of Fig. 9. 

 

6. Concluding remarks 

   



A non-iterative “one-step” methodology has been proposed to derive uniformly 

modulated stochastic processes compatible in the mean sense with a given (target) response 

(uniform hazard) spectrum (UHS) as commonly desired in the aseismic structural design 

regulated by contemporary codes of practice. This is accomplished by solving an established 

in the literature (Giaralis and Spanos 2009) inverse stochastic dynamics problem in 

conjunction with median peak factor spectra numerically derived by pertinent Monte Carlo 

analyses. The adopted solution “fits” directly to the target UHS simple, and thus attractive 

from a practical viewpoint, parametrically defined evolutionary power spectra (EPSs) 

characterizing the sought processes. The level of compatibility achieved is such that no 

additional treatment of the thus derived EPSs or of generated samples of the underlying 

processes need to be further considered. In this respect, the herein proposed methodology 

offers a novel straightforward approach to address the problem at hand as opposed to the 

usual “two-step” approach considered by various researchers in the past which involves the 

treatment of samples on an individual deterministic context (e.g. Gupta and Joshi 1993, 

Shrikhade and Gupta 1996, Crespi et al. 2002, Martinelli et al. 2011).  

The applicability and usefulness of the proposed approach has been demonstrated by 

furnishing extensive numerical results pertaining tothe European EC8 UHS (CEN 2004) and 

to the Chinese GB 50011 UHS. Special attention has been given on three important elements 

that need to be considered for the successful implementation of the adopted approach. These 

are a) the peak factor which governs the statistical nature of compatibility of the EPS with the 

considered UHSs, b) the shape of the envelop function which is associated with the effective 

duration of the sought stochastic processes, and c) the assumed frequency content of the 

parametric EPSs which needs to be appropriately pre-specified taking into account the 

asymptotic behavior of the target UHS for increasing natural periods.    



Specifically, using the EC8 spectrum as a paradigm, and assuming a modulated 

Clough-Penzien (C-P) type of EPS, Monte Carlo analyses have been conducted to estimate 

numerically median peak factor spectra pertaining to all soil conditions defined in EC8 and to 

various damping levels. This need has been dictated by the fact that no convenient expression 

of the peak factor for the non-stationary input processes considered herein exists in the open 

literature to be used in the context of the adopted formulation. Additional numerical data 

derived as by-products of the above analysis have been also reported to elucidate certain 

aspects of the response of linear SDOF oscillators driven by uniformly modulated colored 

noise processes. Polynomial expressions have been fitted to the thus derived median peak 

factor spectra and the polynomial coefficients have been reported in a tabular form. These 

expressions have been further incorporated in the solution of the adopted inverse stochastic 

problem to yield EC8 consistent EPSs. The achieved level of consistency has been assessed 

by comparing the average and median populations of response spectra of large ensembles of 

EPS compatible artificial accelerograms. Compared with similar data incorporating a 

constant peak factor in the derivation of EC8 compatible EPSs (Giaralis and Spanos 2009) 

the average response spectra of the herein generated signals lie significantly closer to the EC8 

spectrum. This result establishes the usefulness and practical merit of the reported EC8 

compatible median peak factor and evolutionary power spectra to be used in the context of 

structural design regulated by the EC8 (see e.g. Giaralis and Spanos 2010, Martinelli et al. 

2011). Incidentally, it is noted that the shapes of the EC8 spectrum for the various soil types 

exhibit considerable variations. Thus, it is reasonable to argue that the average EC8 median 

peak factor spectra herein derived may yield EPSs achieving close compatibility with any 

design spectra provided these can be captured by uniformly modulated C-P EPSs. Obviously, 

the latter argument warrants further numerical investigation.  



 Furthermore, numerical results pertaining to the GB 50011 design spectrum have been 

furnished to point out the fact that the adopted formulation is capable of deriving response 

spectrum compatible EPSs characterized by a prescribed “effective duration” as defined by 

Trifunac and Brady (1975). This has been accomplished by assigning appropriate values to 

the parameter controlling the width of the envelop function used in the definition of the EPSs.  

Further, Monte Carlo simulations have been carried out to numerically derive polynomial 

expressions of median peak factor spectra for various effective durations consistent with the 

GB 50011 design spectrum. These spectra have been incorporated in solving the considered 

inverse problem to yield non-stationary processes of different effective durations achieving 

enhanced compatibility on the average with the GB 50011 spectrum. Therefore, the thus 

derived EPSs can significantly facilitate Monte Carlo-based or random vibration-based 

analyses in structural design scenarios where accounting for the effective duration is deemed 

essential (e.g. ASCE 2000, Hancock and Bommer 2007). 

   

 Commenting on the median peak factor spectra reported herein for uniformly 

modulated C-P and K-T processes three main conclusions can be drawn. First, once a specific 

parametric spectral form is adopted (i.e. either C-P or K-T), its frequency content does not 

significantly influence the peak factor spectra. Second, there is a large difference in peak 

factors corresponding to the C-P and K-T spectral forms in the region of flexible oscillators 

whose response is mostly influenced by the high-pass filter incorporated by the C-P 

spectrum. Third, the impact of the damping ratio on the median peak factors seems to be less 

significant than the impact of the duration of the input processes.  

It is emphasized that the adopted formulation is not restricted to uniformly modulated 

processes which assume a constant in time frequency content. In fact, it can accommodate 

any analytically defined “fully non-stationary” (i.e. non-separable) EPS to be used to model 



the evolutionary attributes observed in recorded strong ground motions. For instance, the 

non-separable EPS used in Spanos and Vargas Loli (1985) and more recently adopted by 

Conte and Peng (1997) could have been assumed (see also Cacciola 2010). This EPS is 

defined by a weighted sum of Kanai-Tajimi uniformly modulated processes and may 

potentially involve tenths of parameters to be determined. Alternative non-separable EPSs 

found in the literature may also be utilized in the same context (e.g. Preumont 1985b, Wen 

and Eliopoulos 1994, Wang et al. 2002, etc.). However, in this work the authors purposely  

refrained from considering such non-separable processes aiming at simplicity and 

practicality. This is because the purpose herein was not to capture/represent the strong ground 

motion in the best possible realistic fashion. Arguably, such a consideration is better 

addressed by means of time-frequency representation techniques (see e.g. Spanos et al. 2007a 

and Spanos et al. 2007b and references therein), or by means of adaptive (i.e. time-varying) 

filter models (see e.g. Fan and Ahmadi 1990, Rezaeian and Der Kiureghian 2010) applied to 

field recorded accelerograms. In this work, the uniformly modulated EPS is merely used as a 

mathematical instrument to achieve an acceptable level of matching between the sought 

processes and the target spectrum in the context set by codes of practice regulating the 

aseismic structural design. 
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Appendix A.  Design spectra of the Chinese GB 50011 and the European EC8 codes 



The elastic relative displacement response/design spectrum for oscillators with 

damping ratio ζ and natural period T, is defined in the current European aseismic code (EC8) 

by the expression (CEN, 2004) 
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In Eq. (A.1) αg is the peak ground acceleration, S is an amplification factor dependent on the 

soil conditions, and TB, TC, TD, TE, and TF are the corner periods defining the various branches 

of the design spectrum also dependent on the soil conditions. The EC8 prescribes five 

different soil conditions to capture the influence of the surface soil layers resulting in 

different shapes as shown in Fig. 12  



 
Fig. 12: EC8 and GB 50011 relative displacement elastic design spectra.  

 
The elastic relative displacement design spectrum for oscillators with ζ= 5% and 

natural period T, is defined in the current aseismic code provisions effective in China (GB 

50011, 2001) by the expression 
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In the above equation αmax denotes the maximum spectral ordinate in terms of the pseudo-

acceleration, and Tg is the “characteristic period” which differentiates the shape of the design 

spectrum to account for various soil conditions and intensity levels as defined by the GB 

50011. Tg can take on 14 different values ranging from 0.25s to 0.95s which differentiate its 

shape as shown in Fig. 12. 
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