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Abstract

We show that the “boundary crossing-unitarity equation” recently pro-

posed by Ghoshal and Zamolodchikov is a consequence of the boundary boot-

strap equation for the S-matrix and the wall-bootstrap equation. We solve

this set of equations for all affine Toda theories related to simply laced Lie

algebras, obtaining explicit formulas for the W-matrix which encodes the

scattering of a particle with the boundary in the ground state. For each the-

ory there are two solutions to these equations, related by CDD-ambiguities,

each giving rise to different kind of physics.
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1 Introduction

The central element in a quantum field theory, on-shell, is its scattering matrix,

which relates the asymptotic in- and out states. As shown in the seminal paper by

Zamolodchikov and Zamolodchikov[1] integrable field theories in 1+1 dimensions

posses an n-particle S-matrix, which factorises into 2-particle S-matrices, which can

then be determined exactly.

Several problems in quantum mechanics, like dissipative systems[2] can be un-

derstood as a quantum field theory in the presence of boundaries [3]. In particular,

one might get some more insight into the space of boundary states in open string

theory [4]. The general scheme of this approach was initiated by Cherednik [5], who

studied the S-matrix describing the scattering of part icles off a wall. In particular

the question of how to find and solve the factorisation (Yang-Baxter) equation in

the presence of a reflecting wall has been answered. Recent research has added

bootstrap[6] and crossing/unitarity equations[7], whic h complete the set of equa-

tions necessary to compute the 2-particle S-matrix in a theory with boundaries.

For a theory to remain integrable the boundary conditions should maintain a

suf ficient number of conservation laws. For example in conformal field theories

[8], integrability demands the boundary condi tions not to introduce any length

scale. This allows conformal invariance to be imposed, requiring now momentum

conservation parallel to the boundary to b e hold. As discussed in [7] a breaking

of conformal invariance has to respect the conservation laws, selecting in this way

integrable boundary condition s. Formally the integrals of motion are found to be

generalizations of the Hamiltonian to higher spins

Hs =
∫ 0

−∞
dx
(

T z̄z̄
s+1 + T z̄z

s−1 − T zz
s+1 − T̄ z̄z

s−1

)

+ φB(y) (1.1)

where the boundary perturbation φB(y) denotes some local field. The quantities Hs
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do not depend on y, if

dφB(y)

dy
= T z̄z̄

s+1 + T z̄z
s−1 − T zz

s+1 − T̄ z̄z
s−1|x=0 . (1.2)

In the present paper we shall be concerned with affine Toda field theories (ATFTs)

[9] and we will assume the existe nce of such boundary conditions∗. ATFTs consti-

tute an important example of completely integrable models, since they are explicit

Lagrangian versions of integrable deformations of conformal field theories. The

breaking of the conformal symmetry simply corresponds to an affinisation of the

Lie algebra g, underlying the conformal invariant theory. Many other features can

be expressed as well very neatly in terms of Lie algebraic quantities, which makes

them interesting objects to study even from a purely mathematical point of view.

Our presentations falls into two main sections. In the following we review some

of the features of the scattering matrix of ATFTs in order to establish our notation

and to formulate the equations needed, in particular (2.10). Section three is the

central part of our manuscript. We derive a pair-bootstrap equation for the S-matrix

and show that, together with the wall-bootstrap equation, t hey imply the boundary

crossing-unitarity eqution. We then present the full set of constraining equations

for the W-matrix, which encodes scattering due to the wall, and solve it for all

simply laced ATFTs. Finally we state our conclusio ns.

2 The S-matrix of Affine Toda Field Theory

In the original formulation by Cherednik [5] of a scattering theory which includes

boundaries, a distinction is made between the scattering matrices encoding the

process before or after some particles have hit the boundary. In general these

matrices turn out to be different, but are related by some relatively simple relations

[5, 10, 11, 12, 13, 14]. Assuming diagonality of all scattering matrices involved,

∗We hope to report elsewhere on a proper investigation of this question.
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this distinction becomes obsolete [6] and one solely has to deal with one type of

S-matrix. Presuming further the existence of some suitable boundary conditions, in

the sense of (1.2), the theory will again be purely elastic. The S-matrix will then be

the product of two factors: one encodes scattering off the boundary and the other

coincides with the S-matrix in the absence of boundaries. It is this second factor,

which we review in this section.

As the result of a sequence of investigations [15, 16, 17, 18, 19, 20, 21, 22] the

S-matrix of affine Toda field theories related to simply laced Lie algebras has been

found to take on a very compact form [21, 22] † . Adopting the notation of [24, 22]

it reads

Sij(θ) =
b
∏

q=a

{

2q −
c(i) + c(j)

2

}−λi·σ
qγj

θ

. (2.3)

Here θ denotes the relative rapidities, where θi parameterises as usual the mo-

menta pi = mi(cosh θi, sinh θi). The limits are taken to be a = c(i)+1
2

and b =

h−1
2

+ c(i)+c(̄ı)
4

. {}θ is a building block comprised out of sinh-functions, i.e. {x}θ =

[x]θ/[x]−θ, [x]θ =< x + 1 >θ< x − 1 >θ / < x + 1 − B >θ< x − 1 + B >θ and

< x >θ= sinh 1
2

(

θ + iπx
h

)

. B(β) is a real function between 0 and 2 incorporating

the coupling constant dependence of the Lagrangian field theory, which is assumed

to be real in the following. In finding the solution of functional equations it is useful

to employ the following equivalent integral representation for each block

{x}θ = exp

(

∫ ∞

0

dt

t sinh t
fx,B(t) sinh

θt

iπ

)

(2.4)

where

fx,B(t) = 8 sinh
tB

2h
sinh

t

h

(

1 −
B

2

)

sinh t
(

1 −
x

h

)

. (2.5)

In each affine Toda theory related to a simple Lie algebra g there are r ≡ rank

of g scalar fields, describing r particles, which can either be associated with a

fundamental weight λi or a simple root αi. The map σ, emerging in the exponent of

† For the non-simply laced case several candidates exist for an S-matrix. Refer to [23] and

references therein.
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(2.3), denotes the Coxeter element of the Weyl group, being a product of reflections

in a complete set of simple roots. In order to define a “universal” element σ, that

is an element which can be written in a general form, independent of what Lie

algebra g one is concerned with, one associates signs + and − to the vertices of

the Dynkin diagrams and defines a function c(i) = ±1 which identifies them. Then

the two elements σ± of the Weyl group consisting of reflections related to simple

roots associated with ±-signs can be used to define uniquely and unambiguously a

particular Coxeter element σ := σ−σ+ for any Lie algebra g. The Coxeter element

splits all the roots into r disjoint orbits containing each h, being the Coxeter number,

elements. The roots γi = c(i)αi lie all in distinct orbits Ωi [24] and one can therefore

alternatively associate a whole orbit to a particle.

It can be shown [22] that Sij(θ) (2.3) is a meromorphic function which satisfies

the usual crossing and unitarity relations demanded from the two particle S-matrix

Sij(θ)Sij(−θ) = 1 and Si̄(θ) = Sij(iπ − θ) . (2.6)

In the case the three point coupling Cijk is non-zero, Sij(θ) will posses an odd

order pole with positive residue due to the propagation of a bound state particle k.

Then (2.3) satisfies the so-called bootstrap equation formulated originally in [1] in

order to find constraining equations, which pose an equivalent to the Yang-Baxter

equation [25] for diagonal S-matrices

Sli (θ + iηi) Slj (θ + iηj) Slk (θ + iηk) = 1 . (2.7)

Here the “fusing angles” ηt, for t = i, j, k, are given by ηt = −π
h

(

2ξ(t) + 1−c(t)
2

)

and

are related to the fusing rule, conjectured in [21], which decides whether the coupling

constant Cijk is vanishing or not. It states that only if there exist equivalence classes

of integers (ξ(i), ξ(j), ξ(k)) and (ξ′(i), ξ′(j), ξ′(k)) satisfying

∑

t=i,j,k

σξ(t)γt = 0 and
∑

t=i,j,k

σξ′(t)γt = 0 , (2.8)
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then the three-point coupling Cijk will be non-zero. The two classes correspond to

the only two inequivalent solutions which are related via ξ′(t) = −ξ(t) + c(t)−1
2

[22].

Classically this rule simply corresponds to the non-vanishing of the commutator

involving two stepoperators of the Lie algebra g
[

Eσξ(i)γi
, Eσξ(j)γj

]

[24], whereas

quantum mechanically it becomes equivalent to the bootstrap equation (2.7).

Making use of the identity γi = (σ− − σ+)λi we can re-express (2.8) in terms of

fundamental weights

∑

t=i,j,k

σ−ξ′(t)λt = 0 and
∑

t=i,j,k

σ−ξ(t)λt = 0 (2.9)

which will be of importance below.

Further we require a particular combination of the boostrap equations in the

next section. Selecting the three equations in (2.7) for l = i, j, k and substituting

them into each other we derive the pair-bootst rap equation

Skk (θ + i2ηk) = Sii (θ + i2ηi) Sjj (θ + i2ηj) S
2
ij (θ + iηi + iηj) . (2.10)

This means having a pair of two particles i and j, possessing rapidities which will

give rise to a bound state, it will be equivalent to scattering either the two pairs of

particles or the two bound states against each other. We depict this situation in

figure 1.

This equation posses as well a geometrical formulation, in the same manner as

(2.7) can be re-expressed geometrically in terms of (2.8) and (2.9).

To see this we consider

Sii(θ+ 2iηi) =
h
∏

q=1

{2q − c(i)}
− 1

2
λi·σ

qγi

θ+i2ηi
=

h
∏

q=1

(

[2q − 4ξ(i) − 1]2θ

[−2q − 4ξ(i) + 2c(i) − 1]2θ

)− 1
2
λi·σ

qγi

where we have employed the relation {x}θ+ πiy
h

= [x+y]θ
[y−x]θ

. Shifting now in the nu-

merator and denominator by

q → q + 2ξ(i) and q → q − 2ξ(i) + c(i) − 1

5



respectively, gives

Sii(θ + 2iηi) =
h
∏

q=1

[2q − 1]
− 1

2
λi·σ

q+2ξ(i)γi

θ

[−2q + 1]
− 1

2
λi·σ

q+2ξ′(i)γi

θ

. (2.11)

Performing similar manipulations on the expression for the square of the S-matrix

yields

S2
ij(θ + iηi + iηj) =

h
∏

q=1

[2q − 1]
−λi·σ

q+ξ(i)+ξ(j)γj

θ

[−2q + 1]
−λi·σq+ξ′(i)+ξ′(j)γj

θ

. (2.12)

Employing now the first equation in (2.8) and the second in (2.9) we derive the

relation

λi · σ
q+2ξ(i)γi + λj · σ

q+2ξ(j)γj + 2λi · σ
q+ξ(i)+ξ(j)γj = λk · σ

q+2ξ(k)γk . (2.13)

A similar equation can be obtained for the second solution for the fusing rule in-

volving ξ′(t) instead of ξ(t). Assembling now this results, that is multiplying the

expression (2.11) for i and j with (2.12), the power of the building blocks will take

on half the left hand side of (2.13), such that (2.10) is satisfied.

The scattering matrix exhibits the usual CDD-ambiguity [26] Sij(θ) → ψij(θ)

Sij(θ), being determined only up to the factor ψij(θ). Equations (2.6) will pose the

following constraint on this function

ψij

(

θ +
iπ

2

)

ψi̄

(

θ −
iπ

2

)

= 1 , (2.14)

which is solved by any function of the form

ψij(θ) =
∏

x

< x >θ< h− x >θ

< x >−θ< h− x >−θ

. (2.15)

Further restrictions come from the bootstrap equations

ψli (θ + iηi) ψlj (θ + iηj) ψlk (θ + iηk) = 1 (2.16)

such that the scattering matrix is fixed up to the function ψij , which we require not

to introduce new poles in the physical sheet, since these w ould have to participate

in the bootstrap.
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It should be noted that a scattering matrix can be thought of as resulting from

the braiding of two operators Zi(θ) and Zj(θ), associated to particle i and j, re-

spectively, in the Zamolodchikov algebra [1]

Zi(θ)Zj(θ) = Sij(θ)Zj(θ)Zi(θ) (2.17)

of which an explicit representation for the matrix (2.3) has been found in [27].

Assuming the existence of some vacuum |0〉 these operators can be used to construct

the Hilbert space by successive action of Z†
i (θ) on this state, that is the Hilbert space

is spanned by the operators
h
∏

i=1
Z†

i (θ)|0〉. Hence by interpreting the left hand side of

(2.17) as an in-state and the two operators on the right hand side as an out-state,

the S-matrix acquires its original sense as defining the superposition of out-states

as in-states.

3 The W-matrix of Affine Toda Field Theory

In the presence of reflecting boundaries the introduction of an additional matrix

W 1′...N ′

1...N (θ), which encodes the scattering of particles off the boundary, is required.

We assume the existence of some conserved quantities such that this matrix fac-

torises, into one-particle amplitudes W i′

i (θ), in a similar fashion as the S-matrix.

Furthermore we presume its diagonality, such that particle Zi(θ) does not change its

quantum numbers while scattering from the wall, but solely reverses its momentum.

Then extending the algebra (2.17) by an operator Zw(0), representing the wall, the

one-particle reflection amplitude Wi(θ) results from

Zi(θ)Zw(0) = Wi(θ)Zi(−θ)Zw(0) . (3.18)

The operator Zw(0) is thought to define the ground state of the Hilbert space in the

presence of the boundary, i.e. |W 〉 := Zw(0)|0〉, such that now the superposition of

in-states in terms of out-states is governed by a product of S- and W-matrices.

7



In analogy to a derivation of the first equation in (2.6), that is applying twice

(2.17), from its very definition (3.18), the equivalent unitarity equation for Wi

results to be

Wi(θ)Wi(−θ) = 1 . (3.19)

As in the theory without boundaries, the associativity of the algebra (2.17) gives

rise to some factorization equations [5, 6], which however for diagonal S-and W-

matrices contain no information. Instead we require the analogue to the bootstrap

equation (2.7) in the presence of a reflecting boundary, which was derived in [6].

Relating again the fusing angles to the integer powers which occur in the fusing

rule, this equation reads now

Wk(θ + iηk̄) = Wi(θ + iηi)Wj(θ + iηj)Sij(2θ + iηi + iηj) . (3.20)

As was pointed out by Ghoshal and Zamolodchikov [7] the equivalent to the

second equation in (2.6), namely the crossing relation, is far less obvious. We shall

provide an alternative derivation of their crossing unitarity equation and demon-

strating that in fact this equation is implied by the wall bootstrap equation. Shift-

ing θ by iπ in (3.20) and subsequently multiplying the resulting equation by (3.20)

yields

Wk(θ + iηk̄)Wk(θ + iηk̄ + iπ) = Wi(θ + iηi)Wi(θ + iηi + iπ)Wj(θ + iηj)

×Wj(θ + iηj + iπ)S2
ij(2θ + iηi + iηj) .

Comparision of this equation with (2.10) shows, that it is solved if

Wi(θ)Wı̄(θ + iπ) = Sii(2θ) (3.21)

is true. This is precisely the “cross-unitarity equation” originally derived in [7],

employing the fact that the same correlation f unction can be viewed in two ways

related by interchanging space and time co ordinates.
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From the symmetry of the S-matrix in its indices we obtain with (3.21) that the

W-matrix for particles and anti-particles coincide

Wı̄(θ) = Wi(θ) . (3.22)

Furthermore from the 2πi-periodicity of the S-matrix we obtain by means of (3.21)

that W is 2πi-periodic in θ too. Using this facts we may rewrite (3.21) as

Wı̄

(

θ +
iπ

2

)

Wi

(

θ −
iπ

2

)

Sīı(2θ) = 1 . (3.23)

Equation (3.21) can be given the following meaning. Consider the p article

i living in the half-space −∞ < x ≤ 0 delimited by a wall at x = 0. Let it

scatter with rapidity θ1 = θ against the wall, this process being described by Wi(θ).

Now the other factor of the left hand side of equ.(3.21) Wı̄(θ + iπ) represents the

scattering of the anti-particle ı̄, but with rapidity increased by iπ, which is the same

as particle i at rapidity θ2 = −θ penetrating the boundary. This corresponds to

a process in a different physical region, namely scattering from the wall at x = 0

by a particle living in the half-space 0 ≥ x < ∞. Both processes are shown in

fig. 2. Now Wi(θ) is not relativistically invariant, but describes the scattering off

the wall in the prefered frame in which the wall is at rest. We may now look at

the scattering of two particles i with rapidities θ1, θ2 in this particular frame with

the same asymptotic configuration as the one described by the left hand side of

equ.(3.21) and also illustrated in fig. 2. We have θ1 = +θ, θ2 = −θ and the

corresponding S-matrix is Sii(2θ), which is exactly the right hand side of equ.(??).

This equation tells us therefore, that an observer far away from the wall cannot tell

whether two incoming particles with opposite rapidities scat ter against each other

at x = 0 or whether they have been reflected by a double-sided mirror, which has

been placed at the origin.

One might now worry whether equations (3.21) and (3.20) are compatible for

all possible angles. We observe that taking j = ı̄ in the wall bootstrap equation

9



and shifting θ by −iηi

2
− iηı̄

2
, the right hand side of (3.20) takes on exactly the

same form as (3.23) since mod2πi ηi − ηı̄ = ±π. However in that case we have

ξ(i) − ξ(j) = ±h
2

+ c(i)−c(j)
4

, which is precisely the power of the Coxeter number

required to relate the representatives of the orbit Ωi and Ωı̄ , related to particles

and antiparticles, respectively [22]. Hence this case does not pose a problem, since

the fusing rule will never give rise to these angles.

In [6] we solely had equations (3.19) and (3.20) at our disposal, which we solved

for some specific Toda models. It was demonstrated there that it is in principle

possible to find solutions of this system of equations, but due to the lack of (3.21)

it is a rather involved procedure. As demonstrated above, together with the ho-

mogeneous bootstrap equation, one equation can be derived from the other. Hence

instead of solving (3.20) we now solve first the “crossing-unitarity” equation (3.21).

Employing the standard technique of Fourier transforms, we obtain an integral

representation for the W-matrix:

Wi(θ) = exp

(

−1

2π

∫

dθ′
1

cosh(θ − θ′)
ln Sīı(2θ

′)

)

. (3.24)

For the theories in mind we know that the S-matrix will always be of the form
∏

x
{x}θ and we therefore obtain that the W-matrix will acquire the same form

W (θ) =
∏

x

Wx(θ) , (3.25)

where the blocks Wx(θ) are in one-to-one correspondence to the ones in S. Using

the integral representation (2.4) we can carry out the θ′-integration in (??) and

obtain

Wx(θ) =
w1−x(θ)w−1−x(θ)

w1−x−B(θ)w−1−x+B(θ)
, (3.26)

where the subblocks wx(θ) are given by

wx(θ) =
< x−h

2
>θ

< x−h
2
>−θ

. (3.27)
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One easily verifies the relations

wx(θ) wx(−θ) = 1 (3.28)

wx−2h(θ) w−x(θ) = 1 (3.29)

wx(0) = w−h(θ) = 1 (3.30)

wx

(

θ +
iyπ

2h

)

wx

(

θ −
iyπ

2h

)

= wx+y(θ) wx−y(θ) (3.31)

wx

(

θ +
iπ

2

)

wx

(

θ −
iπ

2

)

=
< x >2θ

< x >−2θ

(3.32)

from which we deduce the unitarity

Wx(θ)Wx(−θ) = 1 (3.33)

and the crossing-unitarity relation

Wx

(

θ +
iπ

2

)

Wx

(

θ −
iπ

2

)

{x}2θ = 1 (3.34)

for each block in (3.25). Furthermore we derive

Wx+h(θ)Wx−h(θ){x}2θ = 1 (3.35)

W2h−x(θ)Wx(θ) = 1 (3.36)

Wx(θ + 2πi) = Wx(θ) . (3.37)

The zeros and poles of each block Wx(θ) are simple and lie on the imaginary θ-axis.

The poles lie mod2πi at

θ± =
±1 − x− h

2h
iπ and θB

± =
±B ∓ 1 + x+ h

2h
iπ (3.38)

whereas the zeros are situated at

0θ± =
±1 + x+ h

2h
iπ and 0θB

± =
±1 ∓ B − x− h

2h
iπ . (3.39)

Notice that for 0 < x < h, θ± will never lie in the physical sheet, but the coupling

constant dependent pole can now, on the contrary to the case of the S-matrix, move

inside 0 < Im θ < iπ.
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Analogous to the S-matrix, we also have a CDD-ambiguity related to the W -

matrix: Wi(θ) → Wi(θ)ψi(θ), where ψi(θ) satisfies the homogeneous equations

(2.14), with j = ̄ = 0 indicating the ground state, and (2.16), with l = 0. Thus the

CDD-ambiguity for the S- and W-matrices turn out to be restricted by the same

equations. However in the latter case it can be obtained in simple way. Whereas

for the S-matrix a shift of θ by iπ gives simply rise to essentially the inverse, the

same shift for the W-matrix gives rise to a new function. We observe that if Wx(θ)

solves equation (3.34), then Wx+2h(θ) = Wx(θ+ iπ) will be a solution as well, which

from (3.35) is evidently not simply the inverse. It is easy to verify that the function

ψx(θ) which relates these two solutions

Wx(θ + iπ) = Wx+2h(θ) = Wx(θ)ψx(θ) , (3.40)

indeed blockwise solves (2.14) and (2.16). Introduc ing a product over these blocks

we observe that if Wt(θ) for t = i, j, k are solutions of (3.21) and (3.20) then

Wt(θ + iπ) will solve them likewise and hence the function

ψi(θ) =
Wi(θ + iπ)

Wi(θ)
(3.41)

obeys the CDD-constraints (2.14) and (2.16).

Drawing a close analogy to the S-matrix (2.3) of affine Toda theory we might

now conjecture its W-matrix to be of the form

Wi(θ) =
h−1+a
∏

q=a

(

W
2q−

c(i)+c(ı̄)
2

(θ)
)−λi·σ

qγı̄

. (3.42)

In the following we shall verify that this function, apart from the bootstrap equation,

indeed satisfies the general consistency requirement expected from it.

Since each block Wx(θ) individually satisfies the unitarity relation (3.34), Wi(θ)

will do so likewise. In order to satisfy the requirement that the W-matrix for particle

and anti-particle coincide (3.22), we may simply use the fact that λi ·σ
qγj = λj ·σ

qγi

[22]. Meromorphicity follows from the same argument employed in [22] for the S-

matrix. Because of relation (3.36), each block occurs twice in the product, where

12



the values of q are related by q + q′ = h + c(i)+c(̄ı)
2

. Then the total power of each

block turns out to be −λi · σ
qγı̄, which for simply laced algebras will always be an

integer.

Next we verify (3.21). We have

Wı̄(θ + iπ)Wi(θ) =
h−1+a
∏

q=a

(

W
2q−

c(i)+c(ı̄)
2

(θ)W
2q+2h−

c(i)+c(ı̄)
2

(θ)
)− 1

2
λi·σ

qγı̄

. (3.43)

AlthoughWx(θ) is not 2h-periodic in x, the expression in the bracket of this equation

is. Together with the fact that the Coxeter element has period h, we are permitted

to shift the dummy variable q by

q → q −
h

2
+
c(̄ı) − c(i)

4
. (3.44)

Then employing (3.35) and the relation between simple roots associated to particle

and antiparticle γı̄ = −σ−h
2
+

c(i)+c(ı̄)
4 γi [22], the expression becomes

h
∏

q=1

{2q − c(i)}
− 1

2
λi·σ

qγi

2θ = Sii(2θ) (3.45)

and hence (3.42) solves the “crossing unitarity” relation.

In order to establish that this function satisfies the wall-boootstrap equation

(3.20), we would like to use a similar trick as in the case of the S-matrix: we would

like to be able to shift the dummy variable q. However, since W2q+const(θ) has

period 2h in q and σq has period h, a shift in q by some integer value will alter the

expression for Wi(θ). In fact it turns out that this expression does no t solve the

wall-bootstrap equation. However, the above arguments exhibit the the reason for

the following assumption:

We presume that the blocks Wx, which constitute the W-matrix are, up to a

shift of 2h in x, in one-to-one correspondence to the blocks {x}θ which build up

the S-matrix. Additional factors can only be CDD-ambiguities, which we will as

usual ignore. The problem which remains is to determine which of the blocks are

shifted by 2h and which are not. In ot her words, the bootstrap equation (3.20)

13



will determine whether the block {x} in the S-matrix is to be replaced by Wx(θ) or

Wx+2h(θ).

At present we do not have a general unified argument valid for all Toda theories

at hand and we shall therefore turn to a case-by-case analysis. The W-matrix

for all Toda theories related to simply laced Lie algebras will now be obtained in

following way: Writing down first the whole set of W-bootstrap equations, with t he

fusing angles for instance obtained from [20] or an explicit computation of the fusing

rules, we seek equations involving only one particular Wi(θ). We then find the most

general solution of this equation. Having found one Wi(θ) we seek an equation

involving one additional Wj(θ), which then is computed. Proceeding in this fashion

we are able to construct Wi(θ) for i = 1, . . . , r. The remaining equations then have

to be satisfied identically. In this manner we obtain the following solutions:

3.1 a(1)
n

Using as convention that c(1) is always −1, we derive for i = 1, . . . , r

Wi(θ) =
µ(i)
∏

l=1

Wr+2ν(l)−2µ(i)(θ) . (3.46)

Here µ(i) is a function which takes the ZZ2-symmetry of the Dynkin diagram into

account, i.e.

µ(i) :=











i for i ≤ [h
2
]

h− i for i > [h
2
] ,

(3.47)

and ν is a function defined as

ν(n) :=











n for n odd

n+ h for n even .
(3.48)

At present we do not know a solid mathematical proof for this formula to any order,

but we have checked its validity to high order in n.
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3.2 d(1)
n

In this case we adopt the same convention c(1) = −1, such that we obtain for the

two “spinors” c(r) = c(r − 1) = 1 or c(r) = c(r − 1) = −1 , depending on whether

r is odd or even, respectively. Then we obtain for i = 1, . . . , r − 2

Wi(θ) =
i
∏

l=1

W2i−2l+1(θ) Wh−2i+2ν(l)−1(θ) (3.49)

Wr(θ) = Wr−1(θ) =

[ r
2
]

∏

l=1

W4l−3(θ) Wh−4l+3(θ) (3.50)

Again some inductive proof is still required.

3.3 e
(1)
6

In order to avoid cumbersome expressions we introduce the following symbol

l[Wx(θ)]
y

m
≡ Wy−l

x (θ) Wy−m
h−x (θ) W l

x+2h(θ) W
m
3h−x(θ) (3.51)

Our conventions are illustrated in the following Dynkin diagram

◦ •

•

◦ • ◦
α1 α3 α4 α5 α6

α2

We then derive

W1(θ) = W6(θ) = W5(θ) W35(θ) (3.52)

W2(θ) = [W1(θ)]
1

1[W5(θ)]
1 (3.53)

W3(θ) = W5(θ) = W3(θ) W5(θ) W7(θ) W11(θ) W29(θ) W33(θ) (3.54)

W4(θ) = [W1(θ)]
1

1 1[W3(θ)]
2

1[W5(θ)]
3
2 . (3.55)

3.4 e
(1)
7

Again we depict our conventions in a Dynkin diagram
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◦ •

•

◦ • ◦ •
α7α1 α3 α4 α5 α6

α2

and obtain

W1(θ) = [W1(θ)]
1
1 [ calW 7(θ)]

1 (3.56)

W2(θ) = [W1(θ)]
1 [W5(θ)]

1 [W7(θ)]
1
1 W9(θ) (3.57)

W3(θ) = [W1(θ)]
1 [W3(θ)]

1
1 [W5(θ)]

1
1[W7(θ)]

2
1 [W9(θ)]

1 (3.58)

W4(θ) = [W1(θ)]
1
1 [W3(θ)]

2
1[W5(θ)]

3

2 1[W7(θ)]
4
1 1[W9(θ)]

2
1 (3.59)

W5(θ) = [W1(θ)]
1 [W3(θ)]

1
1 [W5(θ)]

2
1[W7(θ)]

2
1 [W9(θ)]

1
1 W9(θ) (3.60)

W6(θ) = [W1(θ)]
1
1 [W3(θ)]

1 [W7(θ)]
1 [W9(θ)]

1
1 (3.61)

W7(θ) = [W1(θ)]
1 W9(θ) . (3.62)

3.5 e
(1)
8

Together with the notations

◦ •

•

◦ • ◦ •
α7

◦
α8α1 α3 α4 α5 α6

α2

we obtain

W1(θ) = [W1(θ)]
1
1 [W7(θ)]

1 [W11(θ)]
1 [W13(θ)]

1
1 (3.63)

W2(θ) = [W1(θ)]
1 [W5(θ)]

1 [W7(θ)]
1
1 [W9(θ)]

1
1[W11(θ)]

2
1 [W13(θ)]

1

[W15(θ)]
1
1 (3.64)

W3(θ) = [W1(θ)]
1 [W3(θ)]

1
1 [W5(θ)]

1
1[W7(θ)]

2
1 [W9(θ)]

2
1[W11(θ)]

3
2
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1[W13(θ)]
3
1 [W15(θ)]

1
1 (3.65)

W4(θ) = [W1(θ)]
1
1 [W3(θ)]

2
1[W5(θ)]

3
2 1[W7(θ)]

4
1

2[W9(θ)]
5
3 2[W11(θ)]

6
2 3[W13(θ)]

6
3 [W15(θ)]

3
2 (3.66)

W5(θ) = [W1(θ)]
1 [W3(θ)]

1
1 [W5(θ)]

2
1[W7(θ)]

3
2 1[W9(θ)]

3
1 2[W11(θ)]

4
2

1[W13(θ)]
4
1 [W15(θ)]

2
2 (3.67)

W6(θ) = [W1(θ)]
1
1 [W3(θ)]

1 [W5(θ)]
1
1 [W7(θ)]

1
1[W9(θ)]

2
1 1[W11(θ)]

3
1

1[W13(θ)]
2
1 [W15(θ)]

1 (3.68)

W7(θ) = [W1(θ)]
1 [W3(θ)]

1
1 [W9(θ)]

1
1[W11(θ)]

2
1 1[W13(θ)]

1 (3.69)

W8(θ) = [W1(θ)]
1
1 [W11(θ)]

1 . (3.70)

We have here reported only one solution. As explained above a second solution can

always be obtained by multiplication of the CDD-factor or equivalently by shifting

all the xs by 2h in Wx. Both relations will give rise to entirely different physics

due to the different positions of the poles in the physical sheet. Depending on the

order and the sign of the residue several of these states may find an interpretation

as stable states in the bound ary.

4 Conclusion

We have demonstrated how the set of consistency equations for the scattering ma-

trices in the presence of reflecting boundaries can be employed in order to compute

the W-matrices for affine Toda field theories.

Evidently the completion of the picture requires further investigations and sev-

eral interesting questions have still been left unanswered. Concerning ATFTs, a

detailed study of possible integrable boundary conditions is desirable, which might

illuminate further their relation to integrable deformed conformal field theories. It

is also expected that the W-matrix can be cast into a more general unified formula,

analogous to the S-matrix, which might lead to a deeper Lie algebraic understand-
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ing. Since most of the solutions for the W-matrix exhibit the possibility of stable

bound states, we may relax our assumption that the wall is always in ground state

and determine the matrices which incorporate these states. Finally the question,

of whether it is possible to parallel the argumentation in the case of the absence of

boundaries and use the knowledge obtained on-shell in order to determine off-shell

properties of the theory, poses an interesting problem.
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Figure 1: The bootstrap equation (2.10)
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