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Abstract

Let G be a semisimple simply connected algebraic group over an

algebraically closed field of positive characteristic p. Denote by G1 its

first Frobenius kernel. In this note, we determine for which group G

the restriction to G1 of any indecomposable G-summand of the tensor

product of any two restricted simple G-modules remains indecompos-

able.
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1 Introduction and notations

Let G be a semisimple simply connected algebraic group over an algebraically

closed field k of positive characteristic p. Assume that G is defined and

split over the prime subfield Fp of p elements. Let F : G → G be the

corresponding Frobenius morphism and denote by G1 := Ker(F ) the first

Frobenius kernel of G. We recall the basic definitions and notation needed

here. More details can be found in Jantzen [8].

Let T be an F -stable split maximal torus of G and let W = NG(T )/T

be the Weyl group. Let B be an F -stable Borel subgroup containing T

(and denote by B+ the opposite Borel subgroup) and let U (resp. U+) be

the unipotent radical of B (resp. of B+). We denote by T1 and B1 the

corresponding subgroups (schemes) of G1.

Let X = X(T ) be the weight lattice and fix a non-singular, symmetric

positive definite W -invariant form on X⊗ZR, denoted by 〈., .〉. Let Φ be the

root system, Φ+ the set of positive roots which makes B the negative Borel

and let Π be the set of simple roots. Define the set of dominant weights by

X+ = {λ ∈ X | 〈λ, α̌〉 ≥ 0 ∀α ∈ Π}

where α̌ = 2α/〈α, α〉 for α ∈ Φ. Define also the set of restricted weights X1

by

X1 = {λ ∈ X+ | 〈λ, α̌〉 < p ∀α ∈ Π}.

The weight lattice has a natural partial ordering: for λ, µ ∈ X we write

λ ≥ µ if and only if λ − µ is a sum of simple roots. Let w0 be the longest

element in the Weyl group W . We denote by α0 the highest short root of Φ
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and by ρ half the sum of the positive roots. The Coxeter number associated

to the root system Φ is given by h = 〈ρ, α̌0〉+ 1.

For λ ∈ X, let kλ be the one dimensional B-module on which T acts

via λ and denote by ∇(λ) the induced module IndG
Bkλ. Then ∇(λ) is finite

dimensional and it is non-zero if and only if λ ∈ X+. For λ ∈ X+, the socle

L(λ) of ∇(λ) is simple and furthermore {L(λ) | λ ∈ X+} is a complete set

of non-isomorphic simple G-modules. For λ ∈ X+, we denote by ∆(λ) the

Weyl module given as ∆(λ) := ∇(−w0λ)∗. A rational G-module M is said

to have a good filtration if it has a filtration

{0} = M0 ⊆ M1 ⊆ ... ⊆ Mk = M

such that each quotient Mi/Mi+1 is isomorphic to an induced module ∇(µi)

for some µi ∈ X+. A rational G-module T is called a tilting module if both

T and T ∗ have a good filtration. Indecomposable tilting modules have been

classified (see Ringel [9] and Donkin [3]), they are parametrized by the set

of dominant weights X+. For each λ ∈ X+, we denote the corresponding

indecomposable tilting module by T (λ). For the dominant weight (p − 1)ρ

we have ∇((p− 1)ρ) = ∆((p− 1)ρ) = L((p− 1)ρ) = T ((p− 1)ρ), this module

is called the Steinberg module and is denoted by St. The restriction to G1

of the set of restricted simple G-modules {L(λ) | λ ∈ X1} gives a complete

set of non-isomorphic simple G1-modules.

We shall also make use of the theory of G1T -modules (see Janzten [8]II.9).

In particular, for λ ∈ X we consider the induced module Ẑ
′
1(λ) := IndG1T

B1T kλ.

The Steinberg module St is simple and injective when restricted to G1

and one suspects that for all λ ∈ X1 the injective hull of L(λ) as a G1-
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module can be obtained by restricting the indecomposable G-summand of

St⊗ L((p− 1)ρ + w0λ) containing the highest weight 2(p− 1)ρ + w0λ. This

is known to be true when p ≥ 2h− 2 (see Jantzen [7] section 4). It was first

shown for p ≥ 3h − 3 by Ballard in [2]. Stephen Doty suggested to look at

a more general problem (see [5]), namely the restriction to G1 of arbitrary

indecomposable G-summands of the tensor product of arbitrary restricted

simple G-modules. More precisely, he asked the following question: For

which group G does the following condition hold?

Condition (*): For all restricted weights λ and µ, the indecomposable

G-summands of the tensor product L(λ)⊗L(µ) remain indecomposable upon

restriction to G1.

For G = SL2(k), it is well known that Condition (*) holds. In [6],

Stephen Doty and Anne Henke used this fact to express the indecomposable

G-summand of the tensor product of arbitrary (not necessarily restricted)

simple modules as a twisted tensor product of certain “small” tilting mod-

ules.

In this paper, we answer Doty’s question completely. We assume from

now on, and without loss of generality, that the root system of the group G

is irreducible. We will show that, in fact, Condition (*) only holds in very

few cases, namely:

Theorem 1 Condition (*) holds if and only if G has Dynkin type A1, or

p = 2 and G has Dynkin type A2 or B2 = C2.

This result is given by Propositions 2 and 3 below.
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2 Proof

Proposition 1 Let λ ∈ X1. Assume that all indecomposable G-summands

of L(λ) ⊗ St remain indecomposable upon restriction to G1. Then there is

no non-zero weight τ of L(λ) of the form τ = pµ for some µ ∈ X.

Proof:Note that if all indecomposable G-summands of L(λ) ⊗ St re-

main indecomposable as G1-modules then they also remain indecomposable

as G1T -modules. Considered as a G1T -module, L(λ) ⊗ St has a filtration

with quotients Ẑ
′
1((p− 1)ρ+ ν) with ν ∈ X occuring dim L(λ)ν times, where

L(λ)ν denotes the ν-weight space of the module L(λ) (see Jantzen [8]II.9.19).

Now if ν = pµ is a weight of L(λ) then Ẑ
′
1((p−1)ρ+ν) ∼= St⊗pµ is projective

and injective so it must occur as a G1T -summand of L(λ) ⊗ St. Thus, by

assumption, L(λ)⊗ St must have a G-summand whose restriction to G1T is

St⊗ pµ. But, for µ 6= 0, the simple G1T -module St⊗ pµ does not lift to G.

Hence µ must be zero. QED

Remark: We now give a different proof of Proposition 1 by considering

the G1-Steinberg block component of L(λ)⊗ St. Using Jantzen [8]II.10.4, it

is isomorphic, as G-modules, to St ⊗ ZF for some G-module Z. As every

indecomposable G-summand of L(λ) ⊗ St remains indecomposable as G1-

modules, Z must be a trivial module and we have

HomG(St, L(λ)⊗ St) ∼= HomG1(St, L(λ)⊗ St).

But we always have

HomG(St, L(λ)⊗ St) ⊆ HomG1T (St, L(λ)⊗ St) ⊆ HomG1(St, L(λ)⊗ St).
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Hence,

HomG1T (St, L(λ)⊗ St) = HomG1(St, L(λ)⊗ St).

Now as G1-modules we have

St⊗ St ∼= St⊗ IndG1
B1

k(p−1)ρ

∼= IndG1
B1

(St⊗ k(p−1)ρ)

∼= IndG1
B1

(IndB1
T1

k)

∼= IndG1
T1

k.

Similarly, as G1T -modules, we have St⊗ St ∼= IndG1T
T k. So

L(λ)T ∼= HomG1T (St, L(λ)⊗ St) = HomG1(St, L(λ)⊗ St) ∼= L(λ)T1 .

Now the T1- fixed points space of L(λ) is exactly the sum of the weight

spaces corresponding to weights of the form pµ for some µ ∈ X. As it has to

coincide with the T - fixed points, we have that every weight of L(λ) of the

form pµ for some µ ∈ X must in fact be zero.

Proposition 2 Assume that the root system of G is irreducible. If Condition

(*) holds then either G has Dynkin type A1 or p = 2 and G has Dynkin type

A2 or B2 = C2.

Before proving this proposition, let us first make a note on truncation

of simple modules. Let Γ be a subset of the set of simple roots Π and let

GΓ be the corresponding Levi subgroup i.e. GΓ is the subgroup generated

by T and the root subgroups Uα with ±α ∈ Γ. The simple GΓ-modules

are parametrized by X+
Γ = {λ ∈ X | 〈λ, α̌〉 ≥ 0 ∀α ∈ Γ}, we denote them
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by LΓ(λ), λ ∈ X+
Γ . For λ ∈ X+ and µ ∈ X, we write L(λ)µ to denote the

µ-weight space of the G-module L(λ). Then the truncation functor Trλ
Γ gives

Trλ
ΓL(λ) :=

⊕
(mα)∈Z|Γ|

L(λ)λ−
∑

α∈Γ
mαα

∼= LΓ(λ)

(see Jantzen [8]II.2.11)

Proof:We shall consider the cases p > 2 and p = 2 separately. Let us

start with the case p > 2. Note that for any irreducible root system of rank

at least 2, we can choose α ∈ Π such that α has non-zero inner product with

precisely one other simple root, say β, and 〈α, β̌〉 = −1. Let ωα and ωβ be

the corresponding fundamental weights. Then we have α = 2ωα − ωβ and so

pωβ = (2ωα + (p− 1)ωβ)− α.

We claim that pωβ occurs as a weight of L(2ωα + (p − 1)ωβ). This follows

from the remark on truncation of simple modules mentioned above, taking

Γ = {α}, and the fact that when p > 2, 0 occurs as a weight of the simple

SL2(k)-module L(2). Hence, by Proposition 1, Condition (*) doesn’t hold in

this case.

We now turn to the case p = 2. Here we shall use the remark on truncation

of simple modules with Γ generating a root system of type A2, and noting

that when p = 2, the simple SL3(k)-module L(1, 1) has non-zero 0-weight

space.

First consider G of the following Dynkin type: An, n ≥ 3; Bn, n ≥ 4;

Cn, n ≥ 3; Dn, n ≥ 5; E6,7,8; F4. In all these cases, we can find simple roots

α, β and γ such that

〈α, β̌〉 = −1, 〈α, η̌〉 = 0 ∀α, β 6= η ∈ Π
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〈β, α̌〉 = 〈β, γ̌〉 = −1, 〈β, η̌〉 = 0 ∀α, β, γ 6= η ∈ Π.

Let ωα, ωβ, ωγ be the corresponding fundamental weights. Then we have

α = 2ωα − ωβ, β = −ωα + 2ωβ − ωγ and so

2ωγ = (ωα + ωβ + ωγ)− α− β.

So we have that 2ωγ is a weight of L(ωα +ωβ +ωγ) and hence by Proposition

1, Condition (*) does not hold for such groups.

We are left with three types of groups, B3, D4 and G2. For type B3, we

take Π = {α, β, γ} such that

〈α, β̌〉 = 〈β, α̌〉 = −1, 〈β, γ̌〉 = −2.

Then

2ωγ = (ωα + ωβ)− α− β

and we can argue as before.

For type D4, let Π = {α, β, γ, δ} with

〈α, β̌〉 = 〈β, α̌〉 = 〈β, γ̌〉 = 〈β, δ̌〉 = −1.

Then we have that 2ωγ + 2ωδ = (ωα + ωβ + ωγ + ωδ) − α − β and we can

argue as before.

For type G2, write Π = {α, β} such that

〈α, β̌〉 = −1, 〈β, α̌〉 = −3.

then we note that

2ωα = (ωα + ωβ)− α− β.

As L(ωα + ωβ) = St = ∇(ωα + ωβ) and 2ωα is a dominant weight, it does

occur as a weight of L(ωα + ωβ). This completes the proof. QED

9



Proposition 3 Condition (*) holds for G of Dynkin type A1 for all primes

and for G of Dynkin type A2 and B2 = C2 when p = 2.

Proof:Type A1: Let 0 ≤ m, n ≤ p − 1 and consider the tensor product

of the two simple modules L(m) ⊗ L(n). It is a tilting module and all its

weights are less or equal to 2p − 2. So any indecomposable G-summand is

either simple or indecomposable projective (injective) when restricted to G1.

Thus condition (*) clearly holds here.

Type A2, p = 2: Note that all restricted simple modules are tilting mod-

ules in this case. Direct calculations using characters show that we have the

following decomposition as G-modules and that each summand has simple

G1-socle.

L(1, 0)⊗ L(0, 1) ∼= k ⊕ L(1, 1)

L(1, 0)⊗ L(1, 0) ∼= T (2, 0) with G1-socle L(0, 1)

L(0, 1)⊗ L(0, 1) ∼= T (0, 2) with G1-socle L(1, 0)

L(1, 0)⊗ L(1, 1) ∼= T (2, 1) with G1-socle L(1, 0)

L(0, 1)⊗ L(1, 1) ∼= T (1, 2) with G1-socle L(0, 1)

L(1, 1)⊗ L(1, 1) ∼= T (2, 2)⊕ 2St where T (2, 2) has G1-socle k.

Type B2 = C2, p = 2: Choose the following ordering on the set of simple

roots: 〈α1, α̌2〉 = −1 and 〈α2, α̌1〉 = −2. Note that all restricted simple

modules are tilting except L(0, 1) which occurs as a submodule of ∇(0, 1)

with quotient k. Now, direct calculations using characters show that we

have the following decompositions as G-modules and that each summand

has simple G1-socle.

L(1, 0)⊗ L(0, 1) ∼= L(1, 1)
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L(1, 0)⊗ L(1, 0) ∼= T (2, 0) with G1-socle k

L(0, 1)⊗ L(0, 1) ∼= M with G1-socle k

L(1, 0)⊗ L(1, 1) ∼= T (2, 1) with G1-socle L(0, 1)

L(0, 1)⊗ L(1, 1) ∼= T (1, 2) with G1-socle L(1, 0)

L(1, 1)⊗ L(1, 1) ∼= T (2, 2) with G1-socle k.

QED

Remark: Note that the proof of Theorem 1 given here can easily be gener-

alized to the case where G is a reductive group (with irreducible root system)

such that its derived subgroup is simply connected.

In this case, Proposition 1 tells us that there is no weight τ of L(λ)

satisfying τ /∈ {ν ∈ X | 〈ν, α̌〉 = 0 ∀α ∈ Π} and τ = pµ for some µ ∈ X.

For the proofs of Propositions 2 and 3, it is clear that we can reduce the

calculations to the derived subgroup.

3 Remarks on some tilting modules

In the remark following Proposition 1, we considered the G1-Steinberg block

component St ⊗ ZF of the G-module L(λ) ⊗ St. There, we showed that

if condition (*) holds then Z is a trivial module. We now investigate the

G-module Z in the general case.

Note that when p ≥ 2h − 2, the module L(λ) ⊗ St is tilting for any

restricted weight λ (see [1] 2.5 Corollary). As any summand of a tilting

module is a tilting module, we see that St ⊗ ZF is also a tilting module.

So by definition St⊗ ZF and St⊗ (Z∗)F have a good filtration. Now using
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Donkin [4], this is equivalent to saying that for all λ ∈ X+ we have

Ext1
G(∆(λ), St⊗ ZF ) = 0

and similarly for Z∗. In particular, for all µ ∈ X+ we have ∆((p−1)ρ+pµ) ∼=

St⊗∆(µ)F and so

Ext1
G(∆((p− 1)ρ + pµ), St⊗ ZF ) ∼= Ext1

G(∆(µ), Z) = 0

and similarly for Z∗. Hence Z is a tilting module. We have seen in Propo-

sition 2 that in many cases, Z is not a trivial module. In this section we

investigate some of its properties.

Proposition 4 For p ≥ 2h− 2, the tilting module Z is semisimple.

Proof:Let µ be any dominant weight of the G-module Z. Then µ satisfy

(p− 1)ρ + pµ ≤ (p− 1)ρ + λ and so pµ ≤ λ. We want to show that any such

λ belong to the lowest alcove C = {λ ∈ X+ | 0 < 〈λ + ρ, α̌0〉 < p}. By the

linkage principle, this would imply that the module Z is semisimple. First

note that as λ is restricted, for any simple root α, we have 〈λ, α̌〉 ≤ p− 1 =

〈(p− 1)ρ, α̌〉. So we have that

〈λ, α̌0〉 ≤ 〈(p− 1)ρ, α̌0〉 = (p− 1)(h− 1).

Now as pµ ≤ λ, we have

p〈µ, α̌0〉 ≤ 〈λ, α̌0〉 ≤ (p− 1)(h− 1).

This implies that 〈µ, α̌0〉 < (h− 1) and hence

〈µ + ρ, α̌0〉 < (h− 1) + (h− 1) = 2h− 2 ≤ p
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by assumption. On the other hand, as µ is dominant, we have that

〈µ + ρ, α̌〉 > 0 for all simple root α. Hence, µ belongs to the lowest alcove as

required. QED

Let us now specialise to the case where L(λ) = St. So we are looking at

the G1-Steinberg block component St⊗ZF of St⊗St. Note that the module

St⊗St is tilting for all primes, and hence so is Z. We are going to deduce the

dimension of the G-module Z from the following proposition. Although we

only need a very particular case of it, namely the dimension of the T1-fixed

points of the Steinberg module, we give a result about any T1-weight spaces

of any induced G1T -module Ẑ
′
1(λ).

Proposition 5 For λ ∈ X, all non-zero T1-weight spaces of Ẑ
′
1(λ) have the

same dimension, namely

p|Φ
+|/|ZΦ/(ZΦ ∩ pX)| = p|Φ

+|−r(p)

where r(p) denotes the rank of the Cartan matrix of G over Fp.

Proof:Using Jantzen [8]II.9.16, we see that the set of T -weights (with

multiplicities) of Ẑ
′
1(λ) is given by

Λ = {λ−
∑

α∈Φ+

mαα, 0 ≤ mα ≤ p− 1}.

Let µ = λ − ∑
α∈Φ+ nαα ∈ Λ. Consider the set of weights ν ∈ Λ congruent

to µ modulo pX. So we want to find all solutions (mα) of the equation

λ−
∑

α∈Φ+

mαα ≡ λ−
∑

α∈Φ+

nαα mod pX
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so ∑
α∈Φ+

mαα ≡
∑

α∈Φ+

nαα mod pX.

View it as a system of linear equations over Fp. Then any solution is obtained

by adding to µ a solution of the homogeneous system of linear equations

∑
α∈Φ+

mαα = 0 in X/pX.

The dimension of the Fp-vector space of solutions is |Φ+|−r(p) so the number

of solution is p|Φ
+|−r(p). In particular, we see that each non-zero T1-weight

space has the same dimension, as the result is independant of µ. We can also

write this dimension as the dimension of Ẑ
′
1(λ), namely p|Φ

+|, divided by the

number of distinct T1-weights, namely |ZΦ/(ZΦ ∩ pX)|. QED

Corollary 1 Let St ⊗ ZF be the G1-Steinberg block component of the G-

module St ⊗ St. Assume Z is non-zero. Then the dimension of Z is given

by

dimkZ = p|Φ
+|−r(p)

where r(p) denotes the rank of the Cartan matrix of G over Fp.

Proof:Note that dim Z = dim HomG1(St, St ⊗ St) and as G1-modules

St⊗ St ∼= IndG1
T1

k, so we have

dim Z = dim HomG1(St, IndG1
T1

k)

= dim HomT1(St, k)

= dim StT1 .

Hence the result follows from Proposition 4. QED
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Remark: For p > 2, the Steinberg weight (p− 1)ρ belongs to ZΦ so we can

always find (mα) ∈ Z|Φ+| such that (p−1)ρ−∑
α∈Φ+ mαα ≡ 0 mod pX. Thus

in this case the module Z is non-zero.

For p = 2, explicit calculations shows that Z = 0 if and only if G has

type An with n ≡ 1 mod 4, Bn with n ≡ 1, 2 mod 4, Cn all n or Dn with

n ≡ 2 mod 4.

In all other cases, Z is a non-zero tilting module whose character can in

principle be computed. Very few indecomposable tilting modules are known

in general so it would be very interesting to determine the decomposition of

Z into indecomposable tilting modules.
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