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Abstract

In this paper we give a new proof for the blocks of any semisimple
simply connected algebraic group when the characteristic of the field is
greater than 5. The first proof was given by Donkin and works in arbitrary
characteristic. Our new proof has two advantages. First we obtain a
bound on the length of a minimum chain linking two weights in the same
block. Second we obtain a sufficient condition on saturated subsets π of
the set of dominant weights which ensures that the blocks of the associated
generalized Schur algebra are simply the intersection of the blocks of the
algebraic group with the set π. However, we show that this is not the
case in general for the symplectic Schur algebras, disproving a conjecture
of Renner.
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1 Introduction and notation

Let G be a semisimple simply connected algebraic group over an algebraically
closed field k. We are interested in the category of all G-modules. When the
field k has characteristic zero, this category is semisimple, in other words every
G-modules splits as a direct sum of simple modules. Over a field of characteristic
p > 0, the category of G-modules is no longer semisimple. Nevertheless, it can
be split into ‘blocks’ such that every G-modules can be written as a direct sum of
indecomposable (but not necessarily simple) modules belonging to these blocks.
Thus in order to study the category of G-modules it is enough to study each
block separately.

We recall the basic definitions and notation needed here. More details can
be found in [10, Part II].

Let T be a maximal torus of G and let W = NG(T )/T be the Weyl group.
Let B be a Borel subgroup containing T . Let X = X(T ) be the weight lattice
and fix a non-singular, symmetric positive definite W -invariant form on X⊗Z R,
denoted by 〈., .〉. Let R be the root system, R+ the set of positive roots which
makes B the negative Borel and let S be the set of simple roots. Define the set
of dominant weights by

X+ = {λ ∈ X | 〈λ, α̌〉 ≥ 0 ∀α ∈ S}

where α̌ = 2α/〈α, α〉 for α ∈ R. For r ≥ 1 define also the set of pr-restricted
weights Xr by

Xr = {λ ∈ X+ | 〈λ, α̌〉 < pr ∀α ∈ S}.

The weight lattice has a natural partial ordering: for λ, µ ∈ X we write λ ≥ µ
if and only if λ − µ is a sum of simple roots. Let w0 be the longest element in
the Weyl group W . We denote by β0 the highest short root of R and by ρ half
the sum of the positive roots. For each root β ∈ R+ and each integer m, define
the (affine) reflection sβ,m on X ⊗Z R by

sβ,m(λ) = λ− (〈λ, β̌〉 −m)β.

Define the affine Weyl group Wp to be the group generated by all reflections
sβ,mp for β ∈ R+, m ∈ Z. Similarly, for any positive integer r we define Wpr to
be the group generated by all sβ,mpr with β ∈ R+ and m ∈ Z. In this paper we
always consider the dot action w·λ = w(λ + ρ)− ρ of Wp on X or X ⊗Z R. So
we view sβ,mp as a reflection through the hyperplane

{λ ∈ X ⊗Z R | 〈λ + ρ, β̌〉 = mp}.

This action of the affine Weyl group Wp on X ⊗Z R defines a system of facets.
A facet is a non-empty subset of the form

F = {λ ∈ X ⊗Z R | 〈λ + ρ, α̌〉 = nαp ∀α ∈ R+
0 (F )

(nα − 1)p < 〈λ + ρ, α̌〉 < nαp ∀α ∈ R+
1 (F )}
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for some nα ∈ Z and some disjoint decomposition R+ = R+
0 (F ) ∪ R+

1 (F ). The
closure F̄ of F is equal to

F̄ = {λ ∈ X ⊗Z R | 〈λ + ρ, α̌〉 = nαp ∀α ∈ R+
0 (F )

(nα − 1)p ≤ 〈λ + ρ, α̌〉 ≤ nαp ∀α ∈ R+
1 (F )}

and the upper closure F̂ of F is equal to

F̂ = {λ ∈ X ⊗Z R | 〈λ + ρ, α̌〉 = nαp ∀α ∈ R+
0 (F )

(nα − 1)p < 〈λ + ρ, α̌〉 ≤ nαp ∀α ∈ R+
1 (F )}

A facet F is called an alcove if R+
0 (F ) = ∅. If F is an alcove then F̄ is a

fundamental domain for the action of Wp on X ⊗Z R. We will often use a
particular alcove, called the fundamental alcove, given by

C = {λ ∈ X ⊗Z R | 0 < 〈λ + ρ, β̌〉 < p ∀β ∈ R+}.

We now refine the partial order ≤ to the partial order ↑ using the affine Weyl
group by setting λ ↑ µ if and only if there are weights µ1, µ2, . . . , µr ∈ X and
reflections s1, s2, . . . , sr+1 ∈ Wp with

λ ≤ s1·λ = µ1 ≤ s2·µ1 = µ2 ≤ . . . ≤ sr+1·µr = µ

or if λ = µ.

For λ ∈ X, let kλ be the one-dimensional B-module on which T acts via λ
and denote by ∇(λ) the induced module IndG

Bkλ. Then ∇(λ) is finite dimen-
sional and it is non-zero if and only if λ ∈ X+. For λ ∈ X+, the socle L(λ)
of ∇(λ) is simple and furthermore {L(λ) | λ ∈ X+} is a complete set of non-
isomorphic simple G-modules. A rational G-module M is said to have a good
filtration if it has a filtration

{0} = M0 ⊆ M1 ⊆ ... ⊆ Mk = M

such that each quotient Mi/Mi+1 is isomorphic to an induced module ∇(µi) for
some µi ∈ X+. A rational G-module T is called a tilting module if both T and
T ∗ have a good filtration. Indecomposable tilting modules have been classified
(see Ringel [11] and Donkin [4]), they are parametrized by the set of dominant
weights X+. For each λ ∈ X+, we denote the corresponding indecomposable
tilting module by T (λ). This module has highest weight λ.

Note that for λ = (pr − 1)ρ we have ∇((pr − 1)ρ) = L((pr − 1)ρ) = T ((pr −
1)ρ), we call this module the r-th Steinberg module and denote it by Str.

Define an equivalence relation ∼ on the set of simple G-modules, or on the
set of dominant weights X+, to be generated by

Ext1G(L(λ), L(µ)) 6= 0 =⇒ L(λ) ∼ L(µ) (or λ ∼ µ)

The equivalence classes of the relation ∼ are called the blocks of G.
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Equivalently, the dominant weights λ and µ are in the same block if and
only if there exists a chain of indecomposable G-modules M1,M2, . . . ,Ms and
dominant weights

λ = λ0, λ1, . . . , λs = µ (1)

such that
[Mi : L(λi−1)] 6= 0 and [Mi : L(λi)] 6= 0

for i = 1, 2, . . . , s.
Using [7, (2.5.4)] we get a third equivalent definition for the blocks of G by

replacing the indecomposable modules Mi above by induced modules ∇(µi).

The linkage principle (see [10, Part II, 6.17]) tells us that the intersection
of X+ with the Wp-orbits on X are unions of blocks (see Step 1 in section 2
below). This was already observed by Humphreys and Jantzen in [9, Section
2.4]. They also proved that the Wp-orbits consisting of weights inside alcoves are
in fact single blocks (using the representation theory of certain finite dimensional
subalgebras of the corresponding hyperalgebra). Donkin then proved in [1] that
the Wp-orbits consisting of primitive weights (see Step 2 in section 2 below) are
single blocks and he then deduced a complete description of the blocks of G.

Theorem 1 [1, Theorem 5.8]
Let λ ∈ X+. Define the integer r(λ) by λ + ρ ∈ pr(λ)X \ pr(λ)+1X . Then the
block containing λ is given by

B(λ) = Wpr(λ)+1 ·λ ∩X+.

Following Donkin’s proof one might have to consider arbitrarily large dom-
inant weights in order to show that two weights are in the same block. In
particular, it does not give a bound on the length of a chain of the form (1)
linking two weights in the same block.

In this paper, we use the knowledge of some composition factors of particular
tilting modules to give a new proof of Theorem 1 except for a few blocks of G
when the prime p = 2 and the root system of G has a component of type
Bn,Cn,Dn,E6,7,8,F4 or G2; p = 3 and the root system of G has a component
of type E6,7,8, F4 or G2 or p = 5 and the root system of G has a component
of type E8. Apart from the fact that this new proof is much shorter, it has
the advantage of giving a bound on the length of a chain linking two weights
in the same block. Moreover, the same proof gives the blocks of the associated
generalized Schur algebras SG(π) provided the finite saturated subset π ⊂ X+

is large enough to contain the highest weight of the tilting modules used in our
proof.

We will assume from now on and without loss of generality that the root
system of G is indecomposable.
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2 New proof of the blocks of semisimple alge-
braic groups

We proceed in the following 5 steps. The first two are identical to those used
by Donkin in his proof.

Step 1: Linkage principle gives unions of blocks.
The linkage principle states that if Ext1G(L(λ), L(µ)) 6= 0 then µ ∈ Wp·λ (see
[10, Part II,6.17] ). Thus if two dominant weights are in the same block then
they are in the same Wp-orbit and hence the Wp-orbits are unions of blocks for
the group G.

Step 2: Reduction to primitive weights. (See [9], [1, Corollary 2.3]).
Let λ ∈ X+. Define the integer r(λ) by λ + ρ ∈ pr(λ)X \ pr(λ)+1X. Define

X+
(r) = {λ ∈ X+ | r(λ) = r}.

Note that X+
(r) = pr(X+

(0) +ρ)−ρ. If λ ∈ X+
(r) with r ≥ 1 then λ can be written

as
λ = pr(λ′ + ρ)− ρ = (pr − 1)ρ + prλ′

for some λ′ ∈ X+
(0) and the functor Φ : M 7→ M [r] ⊗ Str (where M [r] denotes

the twist of M with the r-th power of the Frobenius endomorphism) is an
equivalence of categories from the category of G-modules belonging to X+

(0)

to the category of G-modules belonging to X+
(r) (see [10, Part II,10.5]). In

particular, Φ(L(λ)) = L((pr − 1)ρ + prλ) and Φ(∇(λ)) = ∇((pr − 1)ρ + prλ) so
the corresponding map

θ : X+
(0) → X+

(r) : λ 7→ (pr − 1)ρ + prλ

takes blocks of G to blocks of G.
We say that a weight λ ∈ X+ (or a block B(λ) of G) is primitive if λ ∈ X+

(0).
Using the map θ it is enough to find the blocks for primitive weights.

Thus it is enough for us to show that if λ and η are primitive weights in the
same Wp-orbit, then they are in the same block.

Step 3: Reduction to restricted weights.
From [9, 2.5 Corollary] , we know that if λ is primitive and ∇(λ) is simple
then λ ∈ X1. Thus if λ is primitive and λ /∈ X1 we can find µ ∈ X+ with
[∇(λ), L(µ)] 6= 0 and so µ ↑ λ (µ 6= λ) and µ is in the same block as λ. Hence
we can assume that our two weights λ and η are restricted.

Step 4: Move away from outside walls of dominant region.
For λ ∈ X1 we consider the indecomposable tilting module T (2(p− 1)ρ + w0λ).
We know (see [10, Part II,11.9(3) and 11.11] and [4, 2.5 Theorem] ) that

[T (2(p− 1)ρ + w0λ) : L(λ)] 6= 0.
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(In fact L(λ) occurs in the socle of this tilting module). Thus λ is in the same
block as 2(p− 1)ρ + w0λ = (p− 1)ρ + ((p− 1)ρ + w0λ) ∈ (p− 1)ρ + X1.

Hence we can restrict to the case where our weights λ and η belong to
(p− 1)ρ + X1.

Step 5: Linking close weights.
This last step requires that the characteristic of the field k is not too small.
We use homomorphisms between ‘close’ weights to show that λ and η are both
in the same block as the unique representative of their Wp-orbit contained in
pρ + C̄. We will use the following propositions.

For a dominant alcove C ′ we denote by d(C ′) the number of hyperplanes for
the affine Weyl group Wp separating C ′ from the fundamental alcove C.

Proposition 2.1 Let C ′ be a dominant alcove. Then there exists dominant
alcoves C = Cr, Cr−1, . . . , C1, C0 = C with

C = Cr ↑ Cr−1 ↑ . . . ↑ C1 ↑ C0 = C

and d(Ci) = d(C ′)− i.

Proof: (See proof in [10, Part II Proposition 6.8] ). We use induction on d(C ′).
We can always find a wall F of C ′ such that the hyperplane containing this
wall separates C ′ from C. It has an equation of the form 〈λ + ρ, β̌〉 = mp for
some β ∈ R+ and some m ∈ Z. As C ′ is dominant we have m ≥ 0 and as the
hyperplane separates C ′ and C we have that m > 0 and 〈λ + ρ, β̌〉 > mp for all
λ ∈ C ′. Thus sF ·C ′ ↑ C ′ and d(sF ·C ′) = d(C ′) − 1. Furthermore, sF ·C ′ is
also dominant. We can now apply induction. �

For a facet F we denote by W 0
p (F ) the stabiliser of F in the affine Weyl

group Wp, so W 0
p (F ) = {w ∈ Wp | w·λ = λ ∀λ ∈ F}.

Proposition 2.2 Let λ ∈ X+ be contained in the facet F1. Pick a facet F ⊂ F̄1

and consider µ = w·λ with w ∈ W 0
p (F ) and µ ↑ λ. If 〈x + ρ, β̌〉 > 0 for all

β ∈ R+ and for all x ∈ F then [∇(λ) : L(µ)] 6= 0.

Proof: See [10, Part II Proposition 6.23] .

Combining Proposition 2.1 and Proposition 2.2, we get that any dominant
weight contained in an alcove is in the same block as the unique representative
of its Wp-orbit contained in the fundamental alcove. Hence this shows that the
Wp-orbits containing weights inside alcoves are single blocks as already observed
by Humphreys and Jantzen in [9, Section 2.4].

Now take a dominant weight λ which does not lie in an alcove. Then it
belongs to a wall of some dominant alcove C ′ say and we can still apply to λ the
sequence of reflections given in Proposition 2.1. (Note that we do not require
C ′ ∩X+ to be non-empty and so we do not make any restriction on the prime
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p at this stage). There are two different problems arising if we try to apply the
above argument to λ. First when we apply the sequence of reflections given in
Proposition 2.1 we may obtain weights which are on the outside walls of the
dominant region and so are no longer dominant. However, Step 4 allows us
to move away from these walls by shifting everything by pρ. Thus using the
following shifted version of Proposition 2.1 by pρ solves this problem.

Proposition 2.3 Let C ′ be an alcove in pρ + X+. Then there exist alcoves
Cr, Cr−1, . . . , C1, C0 contained in pρ + X+ with

pρ + C = Cr ↑ Cr−1 ↑ . . . ↑ C1 ↑ C0 = C ′

and d(Ci − pρ) = d(C ′ − pρ)− i.

Thus assuming we can apply Proposition 2.2 at each stage we get that the
primitive weight λ ∈ (p− 1)ρ+X+ is in the same block as the unique represen-
tative of its Wp-orbit contained in pρ + C̄.

We still need to make sure that following what happens to our weight when
we apply the sequence of reflections given by Proposition 2.3, two consecutive
weights satisfy the hypotheses of Proposition 2.2. This can be done most of the
time as we now explain.

At each step, the alcove is reflected through one of its walls F say. First
note that as the alcove belong to pρ+X+ we always have that 〈x+ρ, β̌〉 > 0 for
all β ∈ R+, x ∈ F . Now, each alcove C ′ is a simplex, so if we pick a refection
sF through one of its wall F the only weight λ ∈ C̄ ′ (if it exists) for which
λ and sF ·λ do not satisfy the hypothesis of Proposition 2.2 is the vertex not
contained in that wall. If such a weight exists, it is often a Steinberg weight,
i.e. not primitive. But in some cases, when the prime p is very small, it is a
primitive weight and our argument does not apply then.

We now give an explicit description of when such cases occur. As every
alcove can be obtained from the fundamental alcove by a sequence of reflections
and as the property under consideration only depends on the geometry of the
alcove, not on its position, it is enough to consider the fundamental alcove C.
Denote the simple roots by α1, α2, . . . , αn. Then the n + 1 walls of C are given
by

〈λ + ρ, α̌i〉 = 0 i = 1, 2, . . . n

〈λ + ρ, β̌0〉 = p

We now run through the various types of root systems and give a complete list
of the integral weights on vertices of the fundamental alcove in each case. We
write λ = (λ1, λ2, . . . , λn) where λi = 〈λ, α̌i〉.

Type An:We have 〈λ, β̌0〉 = λ1 + λ2 + . . . + λn so in this case the n + 1 vertices
(0, 0, . . . , 0) − ρ, (p, 0, . . . , 0) − ρ, (0, p, 0, . . . , 0) − ρ, . . . , (0, 0, . . . , 0, p) − ρ are
all Steinberg weights.
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Type Bn: We have 〈λ, β̌0〉 = 2λ1+2λ2+. . .++2λn−1+λn so we get two vertices
(0, 0, . . . , 0)−ρ and (0, 0, . . . , 0, p)−ρ which are Steinberg weights. When p = 2
we also have n− 1 weights on vertices (1, 0, . . . , 0)− ρ, (0, 1, 0, . . . , 0)− ρ, . . . ,
(0, 0, . . . , 0, 1, 0)− ρ which are primitive.

Type Cn: We have 〈λ, β̌0〉 = λ1+2λ2+. . .++2λn−1+2λn so we get two vertices
(0, 0, . . . , 0)−ρ and (p, 0, 0, . . . , 0)−ρ which are Steinberg weights. When p = 2
we also have n− 1 weights on vertices (0, 1, 0, . . . , 0)− ρ, . . . , (0, 0, . . . , 0, 1)− ρ
which are primitive.

Type Dn: We have 〈λ, β̌0〉 = λ1+2λ2+. . .+2λn−2+λn−1+λn so we get four ver-
tices (0, 0, . . . , 0)−ρ, (p, 0, 0, . . . , 0)−ρ, (0, 0, . . . , 0, p, 0)−ρ and (0, 0, . . . , 0, p)−ρ
which are Steinberg weights. When p = 2 we also have n − 3 weights on ver-
tices (0, 1, 0, . . . , 0)− ρ, (0, 0, 1, 0, . . . , 0)− ρ, . . . , (0, 0, . . . , 1, 0, 0)− ρ which are
primitive.

Type E6: We have 〈λ, β̌0〉 = λ1+2λ2+2λ3+3λ4+2λ5+λ6 so we get three vertices
(0, 0, 0, 0, 0, 0) − ρ, (p, 0, 0, 0, 0, 0) − ρ, (0, 0, 0, 0, 0, p) − ρ which are Steinberg
weights. When p = 2 we also have weights on vertices (0, 1, 0, 0, 0, 0) − ρ,
(0, 0, 1, 0, 0, 0)− ρ, (0, 0, 0, 0, 1, 0)− ρ which are primitive. When p = 3 we have
one weight on a vertex (0, 0, 0, 1, 0, 0)− ρ which is primitive.

Type E7: We have 〈λ, β̌0〉 = 2λ1 + 2λ2 + 3λ3 + 4λ4 + 3λ5 + 2λ6 + λ7 so we get
two vertices (0, 0, 0, 0, 0, 0, 0) − ρ and (0, 0, 0, 0, 0, 0, p) − ρ which are Steinberg
weights. When p = 2 we also get weights on vertices (1, 0, 0, 0, 0, 0, 0) − ρ,
(0, 1, 0, 0, 0, 0, 0)− ρ and (0, 0, 0, 0, 0, 1, 0)− ρ which are primitive. When p = 3
we also get weights on vertices (0, 0, 1, 0, 0, 0, 0) − ρ and (0, 0, 0, 0, 1, 0, 0) − ρ
which are primitive.

Type E8: We have 〈λ, β̌0〉 = 2λ1 +3λ2 +4λ3 +6λ4 +5λ5 +4λ6 +3λ7 +2λ8 so we
get one vertex (0, 0, 0, 0, 0, 0, 0, 0)− ρ which is a Steinberg weight. When p = 2
we also get weights on vertices (1, 0, 0, 0, 0, 0, 0, 0)−ρ and (0, 0, 0, 0, 0, 0, 0, 1)−ρ
which are primitive. When p = 3 we also get weights on vertices
(0, 1, 0, 0, 0, 0, 0, 0)− ρ and (0, 0, 0, 0, 0, 0, 1, 0)− ρ which are primitive. Finally,
when p = 5 we also get a weight on the vertex (0, 0, 0, 0, 1, 0, 0, 0) − ρ which is
primitive.

Type F4: We have 〈λ, β̌0〉 = 2λ1 + 3λ2 + 4λ3 + 2λ4 so we get one vertex
(0, 0, 0, 0) − ρ which is a Steinberg weight. When p = 2 we also have two
weights on vertices (1, 0, 0, 0)− ρ and (0, 0, 0, 1)− ρ which are primitive. When
p = 3 we also have one weight on a vertex (0, 1, 0, 0)− ρ which is primitive.

Type G2: We have 〈λ, β̌0〉 = 2λ1 + 3λ2 so we get one vertex (0, 0)− ρ which is
a Steinberg weight. For p = 2 we also have one weight on the vertex (1, 0)− ρ
which is primitive. For p = 3 we also have one weight on the vertex (0, 1) − ρ
which is primitive.

Thus we have given a new proof for the blocks of semisimple simply con-
nected algebraic groups except for some blocks of G when p = 2 and G has type
Bn, Cn, Dn, E6,7,8, F4, G2; p = 3 and G has type E6,7,8, F4, G2 or p = 5 and G
has type E8.
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3 Bound on the length of a chain linking two
weights in the same block

Any λ ∈ X ⊗Z R belongs to the upper closure of exactly one alcove, we denote
this alcove by Cλ. So we have λ ∈ Ĉλ.

Corollary 3.1 Assume that p 6= 2 if G has type Bn, Cn, Dn, E6,7,8, F4, G2, p 6=
3 if G has type E6,7,8, F4, G2 and p 6= 5 if G has type E8. Let λ and η be
two weights in the same primitive G-block. Then there is a chain of dominant
weights

λ = µ0, µ1, µ2, . . . , µs = η

and indecomposable G-modules M1,M2, . . . ,Ms such that

[Mi : L(µi−1)] 6= 0 and [Mi : L(µi)] 6= 0

for all i = 1, 2, . . . , s, with

s ≤ d(Cλ) + d(Cη) + 2 + 2d(w0·C + pρ).

Proof: We follow the steps given in section 2. Step 3 tells us that if λ /∈ X1

then there exists µ1 ∈ X+ with µ1 ↑ λ, µ1 6= λ and [∇(λ) : L(µ1)] 6= 0.
Now if µ1 /∈ X1 we can repeat this process and get µ2 etc. until we reach a
restricted weight. So at each step we apply at least one reflection to µi through
a hyperplane separating µi from C. Thus the number of reflections applied is
at most d(Cλ). Similarly we get at most d(Cη) steps to link η to a restricted
weight. Call λ(1) and η(1) the two restricted weights obtained.

Step 4 link λ(1) to 2(p − 1)ρ + w0λ
(1) and η(1) to 2(p − 1)ρ + w0η

(1), this
adds 2 weights in our chain.

Finally in Step 5 we apply a sequence of reflections to 2(p − 1)ρ + w0λ
(1)

and 2(p− 1)ρ+w0η
(1) that link them both to the unique representative of their

Wp-orbit in pρ + C̄. As we have no control over λ(1) and η(1) we take them as
far away as possible from pρ + C̄, i.e. in the upper closure of w0·C + 2pρ. Now
the length of the chain linking 2pρ + w0·C to pρ + C (as in Proposition 2.3) is
equal to the length of the chain linking pρ + w0·C to C. This gives the final
term. �

Remark 3.2 Corollary 3.1 can easily be generalized to all blocks (not neces-
sarily primitive) by defining the d function in terms of the affine Weyl group
Wpr+1 .

4 Blocks of generalized Schur algebras

As a consequence to our new proof we obtain a sufficient condition for the blocks
of a generalized Schur algebra to be naturally inherited from the blocks of the
corresponding algebraic group.
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Generalized Schur algebras were introduced by Donkin in [2]. We briefly
recall their contruction here. We say that a subset π of X+ is saturated if
whenever λ ∈ π and µ ↑ λ we have µ ∈ π. Let π ⊆ X+ be a finite saturated
subset of X+. Denote by C(π) the full subcategory of all G-modules M such
that all composition factors of M have the form L(µ) with µ ∈ π.

For any G-module M we define Oπ(M) to be the largest submodule of M
belonging to C(π). Consider the module Oπ(k[G]). As π is finite it is finite
dimensional, moreover it is a subcoalgebra of k[G] and thus its linear dual
SG(π) = Oπ(k[G])∗ has a natural structure of finite dimensional algebra. It is
called the generalised Schur algebra associated to the subset π. Note that in
Donkin’s original definition he used the partial ordering ≤ instead of ↑. So we
actually get more generalized Schur algebras here.

The category of all SG(π)-modules is equivalent to the category C(π) (see
[2], [10, Part II, A.17(2)]). The notion of blocks for SG(π) can be defined in
the same way as blocks for G, defined in section 1, simply by replacing all G-
modules by SG(π)-modules. It is clear that if two dominant weights are in the
same SG(π)-block then there are in the same G-block but the converse is false
in general.

Example 4.1 Take G = GLn(k) the general linear group of degree n over k.
Then X+ = {λ = (λ1, λ2, . . . , λn) | λ1 ≥ λ2 ≥ . . . ≥ λn}. Now consider the
subset of X+ given by

π = π(n, d) = {λ = (λ1, λ2, . . . , λn) | λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0,
∑

i

λi = d}.

Then SG(π) = S(n, d) is the usual Schur algebra as defined by Green (see [8]).
Donkin proved in [5] that the blocks for the Schur algebra S(n, d) are simply
the intersection of the block of GLn with π(n, d).

As shown by the following example, this is clearly not the case for arbitrary
finite saturated subset π of X+.

Example 4.2 Take G = SL4(k) with char k ≥ 3. Then X+ = {λ = (λ1, λ2, λ3) |
λi ≥ 0} where λi = 〈λ, α̌i〉. Now consider the subset of X+ given by

π = {λ(1) = (p− 1, 0, p− 3), λ(2) = (p− 3, 0, p− 1)}.

First note that λ(1) and λ(2) are primitive and in the same Wp-orbit as λ(1) =
sα2+α3,p· (p − 2, 1, p − 2) and λ(2) = sα1+α2,p· (p − 2, 1, p − 2). Thus λ(1) and
λ(2) are in the same G-block. On the other hand, as λ(1) and λ(2) are both
minimal (with respect to ↑), we have that the subset π is trivially saturated and
moreover ∇(λ(1)) and ∇(λ(2)) are both simple modules. Thus the corresponding
generalized Schur algebra SG(π) has two blocks {λ(1)} and {λ(2)}. However, if
we increase the size of π by including λ(3) = (p − 2, 1, p − 2) as well then the
three weights are in the same block for the generalized Schur algebra as well.
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Corollary 4.3 Assume that p 6= 2 if G has type Bn, Cn, Dn, E6,7,8, F4, G2, that
p 6= 3 if G has type E6,7,8, F4, G2, and p 6= 5 if G has type E8. Let π be
a finite saturated subset of X+ and let λ ∈ π ∩ X+

(r−1) (r ≥ 1). If for all
η ∈ π ∩X+

(r−1) ∩Xr (r ≥ 1) we also have 2(pr − 1)ρ + w0η ∈ π then the SG(π)-
block containing λ is equal to the intersection of the G-block containing λ with
the set π.

Proof: First consider primitive weights. In this case the proof is exactly the
same as the one given here in section 2 for the algebraic group as at each step,
except Step 4 (hence our assumption), we only link a weight λ with a weight µ
satisfying µ ↑ λ, so if λ ∈ π then so is µ. Note that in Step 4, if 2(p− 1)ρ + w0η
belongs to π then the G-module T (2(p − 1)ρ + w0η) belongs to the category
C(π) as all composition factors L(µ) of this module satisfy µ ↑ 2(p− 1)ρ + w0η.

The non-primitive case can be reduced to the primitive case using the equiv-
alence of categories given in Step 2 of section 2. More precisely, if λ is non-
primitive then λ = (pr−1)ρ+prλ′ for some λ′ ∈ X+

(0) and some r ≥ 1. We have
µ′ ↑ λ′ if and only if (pr − 1)ρ + prµ′ ↑ λ. Note also that (pr − 1)ρ + pr(2(p −
1)ρ + w0λ

′) = 2(pr+1 − 1)ρ + w0λ. �

We now work through the example of the symplectic Schur algebra in details
(see [3] and [6]). Consider the algebraic groups G = GSp2m(k) ⊂ GL2m(k)
defined by

G = {g ∈ GL2m(k) | (gv, gv′) = γ(g)(v, v′) ∀v, v′ ∈ k2m, for some γ(g) ∈ k}

where (v, v′) = vT Jv′ with 2m× 2m matrix J defined by

Jij =
{

1 if j = 2m + 1− i and 1 ≤ i ≤ m
−1 if j = 2m + 1− i and m + 1 ≤ i ≤ 2m

The torus T of G is given by

T = {t = diag(t1, t2, . . . , t2m) | tit2m+1−i = tjt2m+1−j for all 1 ≤ i, j ≤ m}.

Define εi : T → k : diag(t1, t2, . . . t2m) 7→ ti for 1 ≤ i ≤ 2m. Then the root
system of G is given by

R = {εi − εj | 1 ≤ i, j ≤ 2m, i 6= j}

and we take to set of positive roots to be

R+ = {εi − εj | 1 ≤ i < j ≤ 2m}

Note that the roots are not all distinct as εi + ε2m+1−i = εj + ε2m+1−j for
1 ≤ i, j ≤ m. We write ε = εi + ε2m+1−i. The set of simple roots is given by

S = {α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αm−1 = εm−1 − εm, αm = 2εm − ε}.
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The set of dominant weights is given by

X+ = {λ = λ1ε1 + λ2ε2 + . . . + λmεm + aε | λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0}.

Consider the set of polynomial weights given by

π(m) = {λ = λ1ε1 + λ2ε2 + . . . + λmεm + aε ∈ X+ | a ≥ 0}.

Define the degree of a polynomial weight λ by |λ| =
∑m

i=1 λi + 2a and set
π(m, r) to be the set of all polynomial weights of degree r. Note that these
are finite saturated subsets of X+. We write SG(m, r) for the generalized Schur
algebra SG(π(m, r)), called the symplectic Schur algebras. I am not aware of any
complete description of the blocks for these Schur algebras. But Corollary 4.3
applies to this case as it can easily be deduced from the corresponding result for
the semisimple simply connected symplectic group. This result tells us that (for
p ≥ 3) if the degree r is large enough (with explicit bound) then the primitive
blocks of these Schur algebras are given by the intersection of the blocks for G
with the set of polynomial weights of degree r.

We now go further and give a complete description of the primitive blocks of
the symplectic Schur algebras for m = 2 and p ≥ 3. In particular we show that,
surprisingly, the blocks of SG(2, r) are not always the intersection of the blocks
of G with the set of polynomial weights. So this result disproves a conjecture
of Renner [12, Conjecture 4.2]. This is joint work with Stephen Donkin and I
thank him for allowing me to include it in this paper.

Proposition 4.4 Assume p ≥ 3. The primitive blocks of SG(2, r) are given by
the intersection of the Wp-orbits with π(2, r) except for the orbits
Wp· (p − 3 − i, i; a) where 0 ≤ i ≤ p−3

2 and i + 1 ≤ a ≤ p − 1 which de-
compose into two blocks as follows

(i) {(p− 3− i, i; a)} and {(p− 1 + i, i; a− i− 1)}

for 1 + i ≤ a ≤ p− 1− i, and

(ii) {(p−3−i, i; a)} and {(p−1+i, i; a−i−1), (2p−i−3, p−i−2; a−p−1−i)}

for p− 1− i ≤ a ≤ p− 1.

Proof: It is clear that the intersection of the Wp-orbits with the set of polyno-
mial weights of degree r is a union of blocks. We just need to show that these
orbits split into blocks as decribed in the proposition.

First note that if, for some degree r, all restricted weights in the same Wp-
orbit are in the same SG(2, r)-block then for all r′ ≥ r, the primitive SG(2, r′)-
blocks are just the intersection of the Wp-orbit with π(2, r′). This follows from
Step 3 of section 2.

Now using the Morita equivalences defined by the translation functors (see
[10, Part II, 7.9]) it is enough to prove the result for one Wp·λ in each facet. As
already noted after Proposition 2.2, the result is clear if λ belongs to an alcove,
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namely Wp·λ∩ π(2, r) is just a single block. We now consider the various cases
when λ is not in an alcove. The restricted region is represented in light grey
in the figure below. We will write (λ1, λ2) for (λ1, λ2; a) as a is automatically
determined by the fixed degree r (note that in the standard notation for simply
connected symplectic group this corresponds to (λ1 − λ2, λ2)).

(2p-1,p-2)

(p-3,0)

(2p-2,0)

(p-1,0)

(2p-3,p-2)

(p-2,p-2)

(p-1,p-1)

First consider Wp·λ where λ is represented by the grey dot in figure 1. Then
Wp·λ ∩X1 contains a unique element, namely λ itself and so Wp·λ ∩ π(2, r) is
a single block (or the empty set).

We now turn to the orbit Wp·λ where λ is represented be a black dot in the
figure.
Claim 1: For any r ≥ 2p − 2 with r ≡ 2p − 2(mod 2) the dominant weights
(p− 1, p− 1) and (p− 2, p− 2) are in the same SG(2, r)-block.
Denote by χ(λ) the Weyl character corresponding to λ. For λ dominant, χ(λ) is
the character of ∇(λ). As χ(1, 0) is the character of the natural 4-dimensional
G-module, we have

χ(1, 0) = e(1, 0) + e(0, 1) + e(0,−1) + e(−1, 0).

Using Brauer’s formula (see [10, Part II, 5.8]) we get

χ(1, 0)F χ(p− 2, 0) = χ(2p− 2, 0) + χ(p− 2, p) + χ(p− 2,−p) + χ(−2, 0)
= χ(2p− 2, 0)− χ(p− 1, p− 1)− χ(p− 2, p− 2)− χ(0,−1)
= χ(2p− 2, 0)− χ(p− 1, p− 1)− χ(p− 2, p− 2)
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as χ(λ) = −χ(sα·λ) for all simple roots α. Thus we have

χ(2p− 2, 0) = χ(1, 0)F χ(p− 2, 0) + χ(p− 1, p− 1) + χ(p− 2, p− 2).

Hence the standard module ∇(2p − 2, 0) contains both L(p − 1, p − 1) and
L(p− 2, p− 2) as composition factors and so (p− 1, p− 1) and (p− 2, p− 2) are
in the same block.

Finally we turn to the orbit Wp·λ where λ is represented by a white dot in
the figure.
Claim 2: For any r ≥ 3p − 3 with r ≡ 3p − 3(mod 2) the dominant weights
(p− 3, 0), (p− 1, 0) and (2p− 3, p− 2) are in the same SG(2, r)-block.
As r ≥ 3p− 3 we have that ∇(2p− 1, p− 2) is a module for SG(2, r). Using the
same method as in the proof of Claim 1 we see that the standard module ∇(2p−
1, p − 2) contains both L(p − 1, 0) and L(p − 3, 0) as composition factors. On
the other hand, using Proposition 2.2 we know that L(p− 1, 0) is a composition
factor of ∇(2p− 3, p− 2). Hence (p− 3, 0), (p− 1, 0) and (2p− 3, p− 2) are all
in the same block.
Claim 3: Let p−1 ≤ r ≤ 3p−5 with r ≡ p−1(mod 2). The set Wp· (p−3, 0)∩
π(2, r) decomposes as a union of SG(2, r)-blocks

{(p− 3, 0)} and {(p− 1, 0)} for p− 1 ≤ r < 3p− 5

and

{(p− 3, 0)} and {(p− 1, 0), (2p− 3, p− 2)} for r = 3p− 5.

Clearly ∇(p−3, 0) is simple as (p−3, 0) is minimal in its orbit. Moreover, using
Jantzen’s sum formula (see [10, Part II,8.19]), we easily obtain that ∇(p− 1, 0)
is simple as well. This proves the first part. Using Jantzen’s sum formula
again, we see that ∇(2p − 3, p − 2) has only two composition factors, namely
L(2p− 3, p− 2) and L(p− 1, 0). This proves the claim. �
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