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In this paper, we consider the induced modules V and the Weyl modules A for
the algebraic group G = SL(2, K) where K is an algebraically closed field of
characteristic p > 0. We determine the G-modules H'(G1,V(s) @ V(t)) for all
1 > 0, where GG is the first Frobenius kernel of G. We then use it to find the Ext!-
spaces between twisted tensor products of Weyl modules and induced modules
for G. Moreover, we describe explicitly the non-split extensions corresponding

to V’s.
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Introduction

In the theory of highest weight categories, the classes of modules V and A are of
central interest. In particular, twisted tensor products of these modules occur
as important subquotients of V and A (see [12] and [13]).

Here we consider these modules for the group G = SL(2, K),the special linear
group of dimension 2 over an algebraically closed field K of characteristic p > 0.
Suppose that F': G — G is the corresponding Frobenius morphism and let G
denote the first Frobenius kernel of G. If V is a G-module then we denote by V¥
its Frobenius twist. Considered as a Gj-module, V" is trivial. Conversely, if W
is a G-module on which G acts trivially then W = V¥ for a unique G-module

V and we write WD .= V.

Consider the Borel subgroup B of G consisting of lower triangular matrices
and for A € N, let K denote the 1-dimensional B-module of weight . Define

the induced G-module V() by
V(\) == Ind§(K>).

This is isomorphic to the symmetric power S*E where E is the natural 2-

dimensional G-module. The Weyl G-modules, A()), are defined by

Note that socV(A\) = topA(A) = L(A) is simple and {L(A), A € N} form a
complete set of non-isomorphic simple G-modules. For 0 < A < p — 1 we have

L(X) = V(A) = A(X) and in general Steinberg’s tensor product theorem tells us



that if A =3, A\ip® is the p-adic expansion of A then L()) is given by
L) = QL)
i>0
The simple G-modules are thus self-dual.
The modules V() and A()\) have highest weight A occuring with multiplicity

1 and all their other weights p satisfy pu < A.

In order to prove our results, we use the Lyndon-Hochschild-Serre 5-term
exact sequence relating the Ext'-spaces of G and G;. For a rational G-module

V', we have the exact sequence (see [3])
0— HY(G,(V9)"Y) — HY(G,V) — HY(G1,V)¥ — H*(G,(VF)D)

— H*(G,V).

In Section 1, we describe properties of G1-modules and we compute Extév (AV)
for i > 0 as G-modules. In Section 2, we use the 5-term exact sequence above
and the results of Section 1 to compute Extg(V(r)"" @ A(s), V(E)F" @ V(1))
for 0 < k,r and 0 < s,t < p™ — 1. In particular, we show that it has at most
dimension 1. We also find explicitly the non-split extensions corresponding to
a V. This filtration of V by twisted tensor product of V’s and A’s explains the

symmetries observed in the decomposition matrix of G.

1 Computing Extg (A, V)

The category of Gi-modules is equivalent to the category of U-modules where

U is the restricted Lie algebra of G. In particular, U is a self-injective algebra



(see [15]). This category is very well understood ([9],[14]). The simple U-
modules are the restriction of the L(i) for 0 < ¢ < p — 1 and the corresponding
projective U-modules P(i) have the following structure: for 0 < i < p — 2,
socP(i) = topP(i) = L(i) and radP(4) /socP(i) = L(j)® L(j) where i+j = p—2
and for ¢« = p— 1 the projective module P(p —1) = L(p — 1) is simple. Thus the
projective module P(p — 1) is alone in its block and P(¢)and P(j) belong to the

same block if and only if i =jori4+j=p—2.

For an indecomposable non-projective U-module M, we denote by Q(M)
the kernel of the projective cover of M (and we define inductively QF(M) =
Q(QF1(M)). Similarly, we define Q~(M) to be the cokernel of the injective
hull of M (and we define inductively Q~*(M)). The projective (injective) G-
modules are restrictions of G-modules and for n > 0, we have an exact sequence

of G-modules ([17], [4])
0— V(np+i) — P(i)@ V()" — V(n+1)p+j) — 0.

The restriction of this sequence to G gives the projective cover of V((n+1)p+7)
and the injective hull of V(np + i).
The Gi-module V(np + i) has Loewy length 2 for n > 1. We have a sequence

of G-modules ([17], [12])
0— V()" ® V(i) — V(p+i) — V(n -1 @A) — 0 (1)

and its restriction to G gives the Loewy series of V(np + i) as a Gi-module.

Note finally that if V', W and X are G-modules and n > 0 then Extg, (V, W)



has a natural structure of G-module and
Extg (V,W @ XF) = Extg, (V,W) ® X
as G-modules.

W. van der Kallen proved in [16] that if V is a G-module with a good
filtration (that is a filtration with quotients isomorphic to some V’s) then
HO(G1, V)=V has a good filtration and hence, by dimension shifting (see [7]),
H(G1,V)(=1 has a good filtration for all i > 0. Note that the module
V = V ® V has a good filtration and the next two Propositions give the G-

modules H*(G1,V) = Exty, (A, V) for i > 0.

Write t = t1p 4+ tg and s = s1p + sg where 0 < sg,t9 < p — 1.

Proposition 1.1 Fori > 1 we have

V(si+ti+4)F ifso+to=p—2 andi odd

) or so =tg < p—2 and i even
Extg, (A(s), V(1))

Il

0 otherwise.

Proof:

From the block structure of G; we only need to consider the cases so = tg and
so+to = p — 2. Note that if so = ¢tg = p — 1 then A(s) and V() are projective

and so there is no non-split extension. Now suppose sg,to < p — 2.

Extévl (A(s1p+ s0), V(t1p + to) = Extg1 Q7 (A(s1p+ 50), Q7 (V(tip + to)))



EXticl (A(s0), V((s1 +t1)p +to)) if s; even

EXtEl (A(p —2— SQ)7 V((S1 + tl)p + P — 2 — to)) if S1 odd

Now consider the exact sequence,

0 — V((s1+t1)p+to) — P(to) @V (s1+t1)F = V((si+t14+1)p+p—2—1tg) — 0
and apply Homg, (A(sg), —) to get

0 — Homg, (A(s0), V((s1 4+ t1)p + to)) — Homg, (A(so), P(to) @ V(s1 +t1)")

— Homg, (A(s0), V((s1 +t1 + 1)p+p —2 —t))

— Extél(A(so), V((s1 +t1)p+tg)) — 0 (2)
and
Extg ' (A(so), V((s1+t1)p+to)) = Extg, (A(so), V((s1+t1+ Dp+p—2—to)).

Thus, if we prove the case i« = 1 then the result follows by induction. Now,
observe that in the exact sequence (2) the first two terms are isomorphic (A(sg)
is simple and P(tg) ® V(s + t1) is the injective hull of V((s1 + t1)p + to)),

hence the last two terms are isomorphic too and we get
Exte, (A(s0), V((s1 +t1)p + to))
>~ Homg, (A(s0),V((s1+t1 + Dp+p—2—tg))
=~ Homg, (A(s0), P(p — 2 — to) ® V(s1 +t1 + 1)F)

= HOH’IG1 (A(S()),P(p -2 t())) (9 V(Sl + tl + 1)F

Vi(si+t1 +1)F ifsg+tg=p—2

I

0 otherwise.



The proposition then follows by induction on 3. QED

Proposition 1.2

Homcl(A(S1p+so),V(tlerto)) o~ ( ( 1) ( )) 0 0

0 otherwise.
Proof:
Note that by the decomposition into blocks of G1, we only need to consider the
cases sop +tg = p— 2 and sy = ty. Suppose for a start that sg,tp < p — 2.

Consider the exact sequence

0 — V(t)" @ V(tg) — V(tip+to) — V(t1 — )T @ A(p—2 —t5) — 0.
Apply Homg, (A(s1p + s0), —) to get the exact sequence
0 — Homg, (A(s1p + so), V(t)F @ V(ty)) — Homg, (A(s1p + s0), V(t1p + to))

— HOIl’lG1 (A(51p+80), V(tl—l)F®A(p—2—t0)) — EXtél (A(Slp—l-So), V(tl)F®V(f,0))

— EXt%;l (A(Slp—‘rSo),V(tlp—Fto)). (3)
Now,
Homg, (A(s1p+ s0), V(t1)F @ V(to)) = Home, (V(to), V(s1p+ s0)) @ V(t1)F

= Homg, (V(to), P(s0)) ® V(s1)" @ V(t1)"

(V(s1) ® V(t2))" if so = to

~
0 otherwise,

and



HomGl (A(S1p + 80), V(tl - 1)F & A(p —2- to))
>~ Homg, (V(p — 2 — to), V(s1p + s0)) ® V(t; — 1)F

>~ Homg, (V(p — 2 — to), P(s0)) @ V(s1)F @ V(t; — 1)F

(V(51)®V(t1 —1))F if So+t0 :p—2

1%

0 otherwise.

Using Proposition 1.1, we get

Exté;, (A(s1p + s0), V()" @ V(t)) 2 Extg, (V(to), V(sip + s0)) ® V(t1)"

(V(s1+ 1) @V(t)" ifso+to=p—2

0 otherwise

and

X V(si+t1+1)F ifso+tg=p—2
EXtG1 (A(Slp -+ 50), V(tlp + to)) =

0 otherwise.
Soif sp+tg =p—2and p > 2 (i.e. sp # to), then the exact sequence (3)

becomes

0 — Homg, (A(s1p+50), V(tip + o)) — (V(s1) @ V(t; — 1))F

e (V(Sl + ].) X V(tl))F — V(Sl + tl + 1)F
As
dim(V(s; +1) ® V(1)) = dim(V(s1) @ V(1 — 1)) +dim V(s + ¢ + 1),

we deduce that

Homg, (A(s1p + s0), V(t1p + o)) = 0.



If so = to and p = 2, the exact sequence (3) has the form

0 — (V(Sl) ®V(t1))F — HomGI(A(812+80)7V(t12+t0))

e (V(Sl) ® V(tl — 1))F — (V(Sl + 1) ® V(tl))F e V(Sl + tl + 1)F

Hence,

Homg, (A(812 + 80), V(t12 + t())) = (V(Sl) & V(t1>)F.

Finally if sg = tp and p > 2 then clearly

Homg, (A(s1p + 50), V(t1p + to)) = (V(s1) ® V(t1))".

In the case where sqg = tg = p — 1, we have the following

Alsip+s0) = Als)" @ A(p—1)

Vitip+t) = V()" @V(p-1),
and s0
Homg, (A(sip+(p— 1)), V(tip+ (p — 1))
=~ Homg, (A(p— 1), V(p — 1)) ® (V(s1) ® V(t1))"
= (V(s1) ® V(t1))".
This completes the proof. QED

2 Extensions of G-modules

In [5] and [8], Cox and Erdmann determined the Ext' and the Hom spaces

between V(\) and V(u) for arbitrary weights A and pu. For completeness and

10



to fix our notation, we state their result here.
For 0 < a < p—1 denote by a, the integer such that a +a = p— 1. For a weight
1, define

u—1
O () = {Zﬂmi : uZO}

and

u—1
wl(m:{Zmpwp”*“ : ;fu#o”azl,uzt)}u{z;zmi : nu7é07u20}.

=0 i=0

With this notation we have,

K if A=p+2d, dey®p)

1

Home(V(A), V(1)) (4)

0 otherwise

and

K if AX=p+2e, ecyl(p)
Ext}(V(). V() = 8 8 (5)

0 otherwise

In [2], Cline determined all the Ext!-spaces between simple G-modules. In

particular, for simple modules V(r)" @ V(s) and V(k)!" @ V(t), he proved that

K ifr=k+1,s+t=p—2
Exts(V(r)F @ V(s), V(E)F @ V(t)) =
0 otherwise

The following theorem extends this result.

11



Theorem 2.1 Let 0 < k,r and 0 < s,t < p™ — 1 then we have

r=k+2e, ec (k)
K if
s=t

. . r:kil+2d7dew0(k)
Exts(V(r) @A(s), V(E) T @V(t)) =
or t=tg+t1p', 0<to <p'—1

s=to+ (p" " —2—t1)p'

0 otherwise

Proof:

In order to prove this theorem, we use the five terms exact sequence:

0 — H'(G,(VE)TY) — HY(G,V) — H'(G1, V)" — H(G,(V)™)
- H2 (Ga V)a

with V = A(r)" @ V(k)I" @ V(s) @ V(t).

Write s = s1p + 8o and t = t;p + to. Let us first compute H'(G, (V&1 )(=D),

Using Proposition 1.2, we have

VG = Homg, (A(s), V() @ A(r)T" @ V(k)T™

(V(s1) @ V(t)F @ A(r)F" @ V(E)F" if sg =t

1%

0 otherwise.

Now,

prt T
(VG1)(—1) ~ V(Sl) ® V(tl) ® A(T) ® V(k) if s = tg

0 otherwise.

12



Hence for sg = tg we have
HY(G, (Ve V) 2 Bxt, (V)™ @ Als1), VK™ ® V(t)),

and is zero in all other cases.

Let us now compute H'(Gy,V)%. Using Proposition 1.1, we have

H'(G1,V) = Exts, (V()"" @ A(s), V(K)"" @ V(1)
=~ Extg, (A(s), V(1) @ A(r)™" @ V(k)F"

Visi +ti+ D)F @ A" @ V()" ifsg+tg=p—2

1%

0 otherwise.

Thus,

Homg (A(sy +t + DI AT @ V(R)F") ifsg+tg=p—2
HY(Gy, V) =

0 otherwise
Note that all the weights of A(r)"" @ V(k)F" are multiples of p", so to get
non-zero homomorphisms, we must have s; +¢; + 1 = cp” ! for some c¢. But

s,t < p™—1 implies that s; +t; < 2p" ' —2, thusc=1and s; +t; +1 =p L.

Observe that
Homg (A(p" )7, A1) @ V(E)™) = Homa(V(r)™, V(p" )" @ V(k)")

and that all the weights of V(r)"" are multiple of p” so the image of a homo-
morphism from V(r)F" to V(p" 1) @ V(k)¥" lies in the submodule

V(l)Fn ® v(k)F” <V Hfe V(k‘)Fn. Hence,

n n

Homg(A(p" )", A(n)™ © V(K)™) = Homg(V(r)™, V()™ @ V(k)™)

>~ Homg(V(r), V(1) @ V(k)).



We claim that Homg (V(r), V(1) @ V(k)) & K if r = k+ 1+ 2d where d € ¢°(k)

and zero otherwise. Consider the exact sequence
0—V(z-1 —V1)®V(z) —V(z+1) —0. (6)

This sequence splits if and only if z # —1(mod p). Note that for
Homg(V(r), V(1)@ V(k)) to be non zero, we must have r+k = 1(mod 2). Now
suppose k = —1(mod p) then we can assume r # —1(mod p) and so using (6)

with z = r we have

Home (V(r), V(1) ® V(k)) = Homg(V(1)® V(r), V(k))

>~ Homg(V(r—1)@ V(r+1),V(k)).

Now, using (4) we deduce that Homg(V(r—1),V(k)) = K ifand only if r —1 =
k+2d where d € 1°(k) and it is zero otherwise, and Homg(V(r+1),V(k)) =2 K
if and only if 7 + 1 = k + 2d’ where d’ € 9°(k) and zero otherwise. Suppose
they are both non-zero then k +1+2d = k — 1+ 2d’. But this can only happen
when d = 0, d = 1 and » = k + 1. This means that £k = p — 2(mod p) and
r = —1(mod p) contradicting our assumption. Now if k& # —1(mod p) we use
(6) with z = k and the claim follows by a similar argument.

Hence, we have proved the following

K ifsg+to=p—2,8 +t;=p" 1 -1

r =k =+ 1+ 2d where d € °(k)
Hl(Gh V)G

1%

0  otherwise.
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Let us now use the five term sequence to determine H'(G, V). We shall do this

by induction on n. For n =1 we have s,t < p—1 and

e ) -
HY(G, (V) (D) = K ifr=k+2,ecyl(k)and s=1t

0 otherwise

and

y o K ifr=k+1+2d,decy’k)and s+t=p—2
H (G1,V

1%

0 otherwise,

thus,

K ifr=k+2eectyl(k)and s=t

orr=k+1+2d,dey’k)and s+t=p—2
HY(G,V)

I

0  otherwise.

Now we use induction. Note that if p =2 and sg =t =0and s;+¢; =271 -1

then A(s1) and V(¢1) are in different blocks of G; and so

Ext5(V(r)F" @ Alsy), V(k)T" @ V(t1)) =0 for alli.

15



So for all prime p we get
r=k+2e, ec k)
K if

s=t

r=k+1+2d, deyO(k)

HY(G,V) =
Or t=tg+tip', 0<to<p'—1
s=to+ (p" -2 —t1)p
0  otherwise.
This completes the proof of our theorem. QED

Note that if we set n = 0 and s =t = 0 in Theorem 2.1 we get Erdmann and
Cox’s result given by equation (5).

The following proposition shows that when r = k — 1 and s = p"™ — 2 — ¢, the
extension is given by V(kp™ 4 t). By considering weights, it is easy to see that
no other extension described in Theorem 2.1 can be isomorphic to an induced

module V().

Proposition 2.1 For k€ N and 0 <t < p"™ — 2, there is an ezxact sequence of

G-modules
0— V)" @Vt) — Vkp" +t) — V(k— 1) @ A(p" —2—1) — 0.

Moreover, V(kp™ + t) is the only non-split extension, up to isomorphism, of

Vik—1)F" @ A@p* —t—2) by V()" @ V().

16



Dually, the only non-split extension, up to isomorphism, of A(k)"" @ A(t) by

Ak —=1DF" @V (p" —t —2) is given by A(kp™ +1t).

Remark 1: For k € N we have an isomorphism between V(k — 1)F" @
Sty and V(kp™ — 1) given by multiplication of polynomials. It is known that

there is an isomorphism between these modules more generally, see for example

[11)(IL3).

Proof of Proposition 2.1:
If n = 1 then we are done by (1) (Section 1). Suppose n > 1 and write
t=ap" '4+d for0<a<p-—1land0<d<p"!—1 Using induction we

have an exact sequence

0— Vikp+a)f" " @V(d) — V((kp+a)p" +d) —

Vkp+ (a— 1) " @ AP —d—2) — 0.

Using the exact sequences (1) for V(kp 4+ a)" " and V(kp + (a — 1))7" " we

get a filtration of V(kp™ + ap"~! + d) with quotients

V-1 @Ap-—a- 1" @ A@pr—! —d—2)
V) @Va-1)"" @ Aptt —d-2)
Vik—1D)" @ Alp—a—2)""" @ V(d)
V()" @ V(a)" ' @ V(d)
Observe that the module V(kp™ + ap™~! + d) is multiplicity-free, so that the

four quotients have disjoint sets of weights. Hence, V(kp" +t)/V (k)" @ V(t)

17



has a filtration with quotients
Vk—D)F" @A(p—a—1DF"" @A™t —d—2)
Vk-1D)F" @ A(p—a—2)F"" @ V(d)

Note that for a = p—1 or d = p"~! — 1, we only have one factor appearing and

so we are done by Remark 1 above. So suppose a < p—2 and d < p"~! — 2.

Using a very similar argument to the proof of Theorem 2.1 we can show that

ExtL(V(k— 1) @ Ap—a— 1" @ A" —d—2),

1%

V-1 @A@p—a—2)F"" @ V(d) K.

Now as V(kp” +t) has simple top (see [1]), V(kp" +1)/V (k)" @V (t) cannot be

a direct sum of non-zero modules. By induction, we know that A(p™ —ap™ =1 —
d — 2) has a filtration with quotients

Ap—a-1)F"" @ AP —d—2)
Alp—a—2)F"" ®@V(d)
We deduce that the quotient V(kp™ +t)/V(k)¥" @ V(t) is isomorphic to
V- oAt —ap”t —d—-2)=V(k-1)F" @ A(p" —2—1).

This completes the proof QED

Remark 2: S.Donkin suggested an alternative proof of Proposition 2.1. 1
shall sketch his argument here. Let us start with the exact sequence of B-

modules
0—V(s-1)9K_ 1 —V(s) — K, —0 (7)

18



for any positive integer s. Apply the Frobenius morphism F™ to the sequence
(7) and tensor it with K. for some 0 < r < p"™ —1. Then applying the induction
functor from B-modules to G-modules and using the duality of induction (see

[11],I1.4)gives the required sequence.

Remark 3: The composition factors of the V’s are known for SL(2, K)
(use for example equation (1) repeatedly) but Proposition 2.1 gives a direct
explanation of the symmetries observed by A.Henke in the decomposition matrix
of SL(2,K) (see [10]). More precisely, if we write A = kp™ +¢ with k < p—1

then our proposition tells us that

[V (kp" + 1) : L(kp" +a)] = [V(2) : L(a)),

[V (kp" + ) : L((k — Dp" +b)] = [V(p" —2— 1) : L(b)].
Let us write the decomposition matrix of G with the V’s on the horizontal axis
and the L’s on the vertical axis (see figures 1 and 2 below). Then for each

n > 1 and each 1 < k < p — 1, the columns corresponding to V(kp™ + t) for

0 <t < p"™—1 are obtained from the left bottom p™ x p™ block by

1. Translation of length &k along the diagonal,

2. Translation of length k — 1 along the diagonal and then reflection through

the column corresponding to V(kp™ — 1) (shaded on the figures).

Hence, we can construct the decomposition matrix inductively starting with the
left bottom p x p block which is just a diagonal matrix, as for 0 <r <p—1 we

have V(r) = L(r).
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