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In a previous paper we introduced a model of a multi-player conflict in the form of a knockout tournament. Groups of

individuals resolved their disputes in a tournament in which in each round the remaining contestants formed pairs

who competed against each other: in such a contest between two individuals using behaviours x and y there was a

probability that each would win, and a cost incurred by the loser, both of which depended on x and y. The winner pro-

gressed to the next round of the tournament and the loser was eliminated; a player received a reward which depended

on how far that individual progressed. Individuals were constrained to adopt a fixed play throughout the tournament.

In this paper we extend the model by allowing individuals to vary their choice of behaviour from round to round. The

complexity of such systems is investigated and illustrated by both special cases and numerical examples. It is shown

that in this case behaviour is very different to the fixed strategy case.
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1. Introduction

Game theory has a relatively short but valuable his-

tory in modelling the natural world, especially in the

area of animal conflicts. It has provided explana-

tions for apparently paradoxical situations, such as

the practice of heavily armed animals engaging only

in ritualistic contests (Maynard Smith, 1982) and the

tendency of (especially male) animals to develop ex-

tremely costly signals to acquire mates (Grafen,

1990a, b). The concept of an Evolutionarily Stable

Strategy (ESS), introduced by Maynard Smith and

Price (1973) has been especially useful, and has

been central to a large body of literature; some im-

portant examples being (Haigh 1975; Bishop and

Cannings, 1976; Maynard Smith, 1982; Cressman,

1992; Hofbauer and Sigmund, 1998). Most of this

work has concentrated on games between only two

players.

Game theory has its roots in economics originat-

ing with von Neumann and Morgenstern (1944)

(also see Alexrod and Hamilton, 1981 and Binmore,

1992), and multi-player games have always been

central to its theory. See Luce and Raiffa (1957) for

a general discussion, and a description of its applica-

tion to voting schemes. The authors have recently

written a series of papers developing multi-player

models of biological situations (Broom et al., 1996,

1997a, b, 2000). If it is supposed that individuals

come together in groups of size n and that each indi-

vidual freely selects its play, then it is necessary to

specify the payoff of each possible play against ev-

ery possible combination of plays chosen by the

other (n – 1) individuals in the group. In Broom et al.

(1997b) this specification was made tractable by the

choice of the particular structure imposed, namely

symmetric finite contests [also see Cannings and

Whittaker (1994) for a similar treatment of the

multi-player war of attrition]. The others only allow

‘fights’ between pairs, but have these fights embed-

ded within a structure [for another example, see

Mesterton-Gibbons and Dugatkin (1995) who

adopted a round-robin approach in modelling a

dominance hierarchy]. This paper, following on

Selection 1(2000)1–3, 5–21
Available online at http://www.akkrt.hu

* M. Broom is also a member of the Centre for the Study of

Evolution at the University Sussex.

Corresponding author: M. Broom, Centre for Statistics and

Stochastic Modelling, School of Mathematical Sciences, The

University of Sussex, Sussex, UK, E-mail: m.broom@sus-

sex.ac.uk



from Broom et al. (2000), adopts the latter approach,

modelling a multi-player conflict as a set of pairwise

games in a knockout tournament format. Of course

this will not reflect the precise behaviour of any real

population but will capture certain aspects of impor-

tance. For a more detailed rationale, see Broom et al.

(2000).

There now follows a reiteration of some two-

player game theory which is of relevance to work

later in the paper.

In the classical two-player conflict models it is

assumed that individuals compete in pairwise games

for some reward, food or mates perhaps. In the sym-

metric version, which is our concern here, all mem-

bers of the population are indistinguishable and each

individual is equally likely to meet each other indi-

vidual. There is a set S of choices available to each

player to play in a particular game, referred to as

pure strategies. Each contest results in a payoff to

each of the protagonists which is specified by some

a(x, y), the payoff to an individual who plays strat-

egy x when opposed by an individual who plays y; x,

y ∈ S.

Individuals do not need to play the same pure

strategy every time, they can play a mixed strategy

i.e. play x with probability (or probability density) px

for each of x ∈ S. The payoffs are presumed to be ad-

ditive over both the first and second argument, so

that, for example, if S = (S1,…,Sn), the payoff to an

individual playing p against an individual playing q,

which is written as E[p, q], is given by

E a p qij i j

T[ ,p q] p Aq= =∑
where A is the matrix whose (i, j)-element is a(Si,

Sj).

p is an ESS of A if and only if, for all q ¹ p,

(i) E E[ , ] [ , ]p p q p≥ and

(ii) if E E[ , ] [ , ]p p q p= then E E[ , ] [ , ]p q q q> .

See Maynard Smith (1982) or Haigh (1975) for a

more detailed explanation.

The vector p is a Nash equilibrium if it satisfies

condition (i) above against all q ≠ p, but not neces-

sarily condition (ii) (see Hofbauer and Sigmund,

1998). The concept of an ESS can easily be extended

to the multi-player case (see Palm, 1984 and Broom

et al., 1997b).

The model developed in Broom et al. (2000) pro-

vided a number of predictions. For the case where

the pairwise games were the classical Hawk–Dove

game the more players, and hence the more rounds

that were played, the smaller the frequency of the

aggressive Hawk strategy amongst the population.

However, the frequency of individuals playing

Hawk in a particular contest could rise, since Hawk

individuals were more likely to progress to the later

rounds. In general the structure of the tournament

had a large bearing on the overall level of aggres-

sion, which could be both less than or greater than

that for independent games (and the difference could

be fairly large). The model also predicted a relation-

ship between the level of aggression in a population

and the degree to which rewards are unevenly split

amongst individuals, the concept of reproductive

skew first developed in Vehrencamp (1983).

It was shown that there may be many ESSs for the

type of knockout model described in Broom et al.

(2000), although if there are only two options avail-

able it is impossible to have no ESS. It was shown

that for the Hawk–Dove case, there is a unique ESS,

which can be evaluated numerically via a formula

given in Broom et al. (2000).

1.1. The structure of knockout games

A knockout contest is a multi-player game which is

composed of a number of pairwise games. Initially

there are 2n players each of whom plays another

player in a pairwise game in which there is a ‘win-

ner’. The winners are then repaired in the next round

and this continues until there is one overall winner.

Players receive a reward according to which round

they were eliminated from the competition, usually

increasing with the number of rounds the player sur-

vives. Opponents in each round are chosen at ran-

dom, and we assume here that players do not differ

in any aspect which affects their performance, other

than the selection of strategies. Thus the organisa-

tion is similar to many human competitions, such as

the Wimbledon Lawn Tennis Championships, al-

though at Wimbledon individuals are not of equal

quality and there is a seeding system which keeps

apart the stronger players in the early rounds.

The main advantages of the knockout model are

that it breaks down a contest between a large number
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of individuals into a (relatively small) collection of

pairwise games, and it has one of the simplest con-

ceivable structures of pairwise games where every

individual starts from an identical position. How-

ever, as we shall see, interesting phenomena can be

observed from groups of as few as 4 players. The

disadvantage is that it is not realistic for a large

group of animals to form themselves into fighting

pairs in such an ordered way, although it is not un-

reasonable to think that a structure approximating to

the knockout model might occur in some circum-

stances. In addition large groups that are stable will

have already formed a hierarchy, and groups re-

forming may well have a memory of other individu-

als (see, for example, Barnard and Burk, 1979). So

the model may only be useful in considering groups

which form for the first time.

Initially there are 2n players who play a pairwise

game with one opponent such that there is a ‘winner’

and a ‘loser’. The loser is eliminated from the com-

petition and the winner enters the next round, where

the process is repeated with 2n–1 players. This con-

tinues until the final round with only two players.

Define round k as the round with 2k players remain-

ing, i.e. the players start in round n, and the final

round is round 1. This is the opposite to the round

numbering system used in most sporting contests,

but is mathematically more convenient. Losers in

round k gain the reward V
k
, the overall winner re-

ceiving V
0
. It is assumed that V

k
³ V

k + 1
(k = 0,…,

n–1).

The pairwise games which are played in the

knockout contest could be any game which has a

winner and a loser. As in Broom et al. (2000), we

consider a very simple game in this paper. The

pairwise game which is played in each round is de-

fined as follows:

Suppose that in each round there are available m

strategies labelled O
1
, …, O

m
. These shall henceforth

be referred to as options. Terms such as mixed op-

tion will be used. The term strategy will be reserved

for the overall strategy specifying which option is to

be used for each round should the player progress to

that round. This specification may be probabilistic,

comprising all the options from each round. Let the

probability that a O
i
-player beats a O

j
-player be ½ +

∆ij, so that ∆ij + ∆ji = 0 and ∆ii = 0. In addition if a O
i
-

player loses to a O
j
-player it incurs a cost c

ij
(a re-

ward –c
ij
), which might correspond to an injury, or

loss of time or energy.

In Broom et al. (2000) each player used the same

option in each round. In this paper players may vary

their option from round to round. Note that the two

cases can be thought of as the two extreme cases out

of a set of possible types of game (see Broom et al.,

2000). Our conflicts each involve 2n individuals and

we envision a population which has a large (essen-

tially infinite) set of such conflicts. The set of 2n

players are selected at random from the infinite pop-

ulation of players.

2. A variable strategy

In this paper we allow players to change their option

from round to round. As opposed to the fixed strat-

egy case, and as in any two-player conflict, we do

not need to differentiate in any round as to whether

individuals are playing pure or mixed options; it is

only the overall population play which matters. We

find a recurrence relation for the evolutionary stable

play in round k conditional on all lower numbered

rounds (i.e. rounds later in the competition). The

term Evolutionarily Stable Option (ESO) is coined

for such play (formally defined in Section 2.2) and

we show that a collection of ESOs for each round

forms a Nash equilibrium. In Sections 2.3–2.6 we

consider the 2 and 3 option cases in more detail.

The type of contest that we consider has a lot in

common with extensive two-person games de-

scribed by Selten (1983) (see also Van Damme,

1991). Both games use a dynamic programming ap-

proach, finding optimal play at any stage of the

game conditional upon optimal play at later stages.

Selten (1983) uses the term local strategy for what

we call an option and any collection of local strate-

gies is referred to as a behaviour strategy. In case of

extensive two-person games the same two players

play at every stage, whereas in our game only one

player gets through to the next stage, and the proba-

bility of qualification depends upon the option used.

Nevertheless, there are many similarities between

the two games, and these are commented upon

throughout the paper.

EVOLUTION IN KNOCKOUT CONTESTS 7



2.1. The equivalence of different strategy

combinations

For n rounds and m options, which we label O
1
, …,

O
m
, there are mn pure strategies (a selection of an op-

tion for each round). However, the same population

structure can be obtained from different mixtures of

these.

Consider the case where m = n = 2. The four pos-

sible pure strategies are S
11

, S
12

, S
21

and S
22

(the first

subscript is the option played in round 1, the second

in round 2). Let the proportions of S
ij

at the start be

r
ij
, so that

r
11

+ r
12

+ r
21

+ r
22

= 1

Further, let the proportion of O1-players in round 2

be p2 = r11 + r21, and the proportion in round 1 be p
1
.

The probability of a O
1
-player reaching round 1 is

½ + ∆(1 – p
2
) and for a O

2
-player it is ½ – ∆p2, where

∆ = ∆12. Therefore

p
1

= [1 + 2∆(1 – p2)]r11 + (1 – 2∆p
2
)r

12
.

Together with the equation p
2

= r
11

+ r
21

, this gives

two equations in three free variables, so that there

may exist a family of pure strategies which give the

same values of p
1
and p

2
. One can prove that there al-

ways exist such a solution with valid r
ij
. For exam-

ple, in case ∆ = 1/2, p
1

= 1/2 and p
2

= 1/2 we have

such a family defined by r
11

= x, r
12

= 1 – 3x, r
21

= 1/2

– x and r
22

= 3x – 1/2 for x ∈ [1/6, 1/3]. More gener-

ally there are mn pure strategies (i.e. mn – 1 free vari-

ables) and only n equations. This phenomenon also

occurs for extensive two-person games, and is re-

ferred to as spurious duplication in Selten (1983).

In general a strategy is of the form (p1, …, pn),

where the vector pi
T = (p

i1
, …, p

im
) and p

ij
is the prob-

ability of playing option j in round i. When m = 2 a

strategy is of the form (p
1
, …, p

n
), p

i
being the proba-

bility that the player adopts option 1 in round i.

2.2. Evolutionarily stable options

Assuming that we know which strategies are going

to be played in later rounds, we can work out exactly

the expected payoff to a player for any given course

of action in the current round given the action of the

current opponent.

An option (i.e. the play in a particular round) can

be represented by a vector, and similarly the mean

option in a particular round is also represented by a

vector, with its kth entry representing the probability

that a randomly chosen opponent plays pure option

O
k
. We define an ESO for round j conditional upon

the mean option of the population played in later

rounds. As in Broom et al. (2000), we assume an ef-

fectively infinite array of contests between 2n play-

ers. Define the payoff E[r
i
, v

i
; r

1
, …, r

i–1
] as the ex-

pected payoff to a player playing r
i

against an

opponent playing v
i
in round i, when the mean popu-

lation option in round j is r
j
∀ j < i.

We define the ESO in a similar manner to an ESS

in a two-player game, as indeed a single round with

future behaviour fixed is just such a conflict. p
i
is an

ESO for round i conditional upon r
1
, …, r

i–1
if, for all

q
i
≠ p

i
,

(i)E[p
i
, p

i
; r

1
, …, r

i–1
] > E[q

i
, p

i
; r

1
, …, r

i–1
] and

(ii)if E[p
i
, p

i
; r

1
, …, r

i–1
] = E[q

i
, p

i
; r

1
, …, r

i–1
] then

E[p
i
, q

i
; r

1
, …, r

i–1
] > E[q

i
, q

i
; r

1
, …, r

i–1
].

p
i
is a Nash equilibrium option if it satisfies condi-

tion (i) for all q
i
≠ p

i
(it need not satisfy (ii)).

Hence we can work backwards from the final

contest using results from two-player game theory to

find an ESO for each round conditional upon ESOs

in later rounds (there may be none, in which case the

process breaks down, or more than one). These op-

tions then, collectively, form a Nash equilibrium

strategy (and possibly an ESS) for the whole game.

Such a collection is referred to as a Locally Stable

Strategy (LSS) in Selten (1983). Note that to have a

Nash equilibrium all that is required is a Nash equi-

librium option in each round conditional on future

rounds. It is proved by van Damme (1991) that for

the extensive 2-person game, any ESS is also an

LSS. It is easy to show that the corresponding result

is true here; namely that (p
1
, …, p

n
) is an ESS only if

p
j
is an ESO in round j, conditional on lower num-

bered rounds, for all j. This is true since if p
1
, …, p

j–1

are ESO’s of their respective rounds then p
j
must be

an ESO as well, otherwise there is a q
j

s.t. (p
1
, …,

p
j–1

, q
j,

p
j+1

, …, p
n
) invades (p

1
, …, p

n
).

Note that only strategies of this form are resistant

to invasion from strategies ‘a single mutation away’

from them i.e. (p
1
, …, p

j–1
, q

j,
p

j+1
, …, p

n
) any q,

8 M. BROOM et al.



some j. This only prevents the invasion of these spe-

cific strategies, however, so that the condition is

necessary but not sufficient, as we see in Section 2.4.

2.3. The two-option case

We now consider the variable option case with just

two options. We define some terms useful for work-

ing out the ESO(s) in a given round (as a function of

the payoff parameters and Wk, the expected reward

for winning in round k). A recurrence relation is de-

veloped which finds the ESO(s) in round k condi-

tional on the ESO in round k – 1 and all later payoffs,

and thus finds all candidate ESSs for the whole

game. We proceed to find when the candidate ESS

for the 4-player (2 round) case is an ESS (Section

2.4) and show how the dynamics of the system work

when it is not (Section 2.5).

Let W
k

be the expected reward for winning in

round k (including the costs expected to be in-

curred), i.e. for a player entering round k – 1 (e.g.

W
1

= V
0
), and let ∆ = ∆

12
as earlier and in Broom et

al. (2000). Further define the following terms:

C
c c

c C
c c

c1
22 12

12 2
11 21

21
2 2

= − + = − −∆ ∆, ,

y C W V y C W Vk k k k k k= + − = − −∗
1 2∆ ∆( ), ( ),

a V V Ck k k= − ++∆( ) ,1 1

1

2

v
V V

k
i

k i k
i

k

= +
− −

=

−

∑
2 2

0

1
1

1

.

Thus C
i
is the expected cost incurred by a O

2
-player

when playing an O
i
-player minus that of a O

1
-player

playing an O
i
-player. v

k
is the mean reward of a

player winning in round k not including future costs.

The relevance of y
k
, yk* and a

k
will be seen shortly.

It is now shown that the ESO for round k depends

upon y
k

and yk* in a simple way. The payoffs for

round k are given by the matrix,

( ) ( ) ( )

( )
M

W V c W V c W V c

W V c W
k

k k k k k k

k k

=
+ − + − + − +

+ − −

1

2

1

2
1

2

11 12 12

21

∆

∆( ) ( )k k k kV c W V c− + + −

















21 22

1

2

.

For example, when a O
1
-player plays a O

2
-player,

the probability of winning is ½ + ∆ with rewardWk ,

and the probability of losing is ½ – ∆ with reward

V
k

– c
12

so that the O
1
-player’s expected payoff is

1

2

1

2
12+






 + −






 −∆ ∆W V ck k( ).

The above is equivalent to a single-round two-player

game. For such a game with payoffs

a b

c d








there is a pure ESO (1, 0) if c – a < 0, a pure ESO

(0, 1) if b – d < 0 and a mixed ESO (p, 1 – p) where

p
b d

b c a d
= −

+ − −
,

when both c – a > 0 and b – d > 0. We shall, as in

Broom et al. (2000), assume that neither c – a nor

b – d are zero (these are non-generic cases). For ma-

trix M
k

c a
c c

c W Vk k− = − − − − =11 21
21

2
∆ ∆( )

C W V yk k k2 − − = ∗∆( )

b d
c c

c W Vk k− = − + + − =22 12
12

2
∆ ∆( )

C W V yk k k1 + − =∆( )

c b a d y y C Ck k+ − − = + = +∗
1 2.

This means that for round k there are ESOs as fol-

lows: yk* < 0 yields a pure O
1
, yk < 0 yields a pure O

2

and yk > 0, yk* > 0 yields a mixed ESO (the propor-

tion of O
1
-players being y

k
/(C

1
+ C

2
)). There are two

different cases to consider:

(i) C
1

+ C
2

> 0, when an internal ESO is possible

and

(ii) C
1

+ C
2
≤ 0 (if C

1
+ C

2
< 0 then two pure

ESO’s are possible).

Thus if we can find the set of values of y
k

(and thus

yk* = C
1

+ C
2

– y
k
) for all values of k, i.e. (y

1
, …, y

n
),

we can find the set of ESOs and thus the correspond-

ing candidate ESS. As we shall see, there may be

more than one such set (y
1
, …, y

n
), and so more than

one candidate ESS.

Defining X
k

as the expected cost incurred by a

player in round k, in Appendix A it is shown that yk

satisfies the following recurrence relation

EVOLUTION IN KNOCKOUT CONTESTS 9



y
y

a Xk
k

k k+ = + −1
2

∆ . (1)

Thus we have a recurrence relation for y
k
which also

includes a term a
k
which is known and X

k
which is a

function of p
k

which is itself a function of y
k
. Con-

sidering the two separate cases;

(i) C
1

+ C
2

> 0.

We define b
k

and z
k

as follows:

b
a

C C
z

y

C C
k

k
k

k=
+

=
+1 2 1 2

, .

Using the recurrence relation (1) for y
k
, we obtain

y
y

a C C p pk
k

k k k+ = + + + − −1 1 2
2

1∆( ) ( )

1

2
111 22∆[ ( )]c p c pk k+ −

⇒ = + + − −+z
z

b p pk
k

k k k1
2

1∆ ( )

1

2

111 22

1 2

∆ c p c p

C C

k k+ −
+

( )
(2)

and using the signs of the y
k

and inferring similar

signs for the z
k
we have that p

k + 1
takes the value z

k + 1

if this is between 0 and 1, the value 0 if z
k + 1

is less

than zero and the value 1 if z
k + 1

is greater than 1. So

if we know z
k
and p

k
we can find z

k + 1
and p

k + 1
i.e. if

the values of p
1

and z
1

are known then all the values

of p
k
(k = 1, …, n) can be found. p

1
follows immedi-

ately from z
1

which clearly follows from y
1

= a
0

+

C
1
/2 (W

1
= V

0
), i.e.

z
a C

C C
1

0 1

1 2

2

2
= +

+( )
.

So there is a unique ESO for each round, and thus a

unique candidate ESS.

Example 1

Consider the following set of payoffs.

V
0
= 7.5, V

1
= 6.5, V

2
= 0, c

11
= 25, c

12
= 0, c

21
= 11,

c
22

= 1, ∆ = 0.5. For k = 1, that is the final round, we

have

M1 = −
−







5 5 7 5

4 5 6 5

. .

. .

so that since c > a and b > d there is an internal ESO,

with p
1

= 0.5. The payoff to each option, and hence

to any mixed strategy, in a population playing the

ESO is 1. Thus W
2

= 1 and so the payoff matrix for

round 2, in a population which plays 0.5 in round 1 is

M 2 = −
−







12 1

11 0

giving an ESO with p
2

= 0.5 and thus an overall can-

didate ESS p = (0.5, 0.5) and expected payoff –5.5

for the whole contest.

(ii) C
1

+ C
2
≤ 0.

In this case there cannot be any pk which is not equal

to 0 or 1, i.e. p
k
(1 – p

k
) = 0. If p

k
= 1 then X

k
= c

11
/2,

and if p
k

= 0 then X
k

= c
22

/2 i.e.

p y
y

a
c

k k
k

k= ⇒ = + −+1
2 2

1
11∆ ,

p y
y

a
c

k k
k

k= ⇒ = + −+0
2 2

1
22∆ .

We obtain the following relationship between p
k
and

y
k
.

If yk* < C
1

+ C
2

then p
k

= 1 is the ESO.

If C
1

+ C
2

< yk* < 0 then y
k
< 0 and thus both p

k
=

0 and p
k

= 1 are ESOs.

If 0 < yk* then y
k

< 0 and so p
k

= 0 is the ESO.

As in case (i) if we have the values of p
k
and y

k
we

can also find the values of p
k + 1

and y
k + 1

. Similarly it

is easy to find the value of p
1

(the value of y
1

is a
0

+

C
1
/2 as before). However, in this case, the values of

p
k
may not be unique. If y

k
lies between C

1
+ C

2
and 0

then p
k

can be either 0 or 1, which in turn generates

two values of y
k + 1

, which generates more then a sin-

gle set of ESOs. This implies that while in case (i)

there is a unique candidate ESS (p
1
, …, p

n
) in case

(ii) the number of candidate ESSs lies between 1 and

2n. In fact for case (ii), all candidate ESSs are really

ESSs, due to the fact that all of the ESOs are pure

strategies. If in any round k an individual does not

play a pure ESO, the value of W
k

for that individual

falls, and thus the payoff matrix M
k

for that individ-

ual is dominated by that for an individual playing the

ESO, which in turn implies that the same is true for

M
n

the payoff matrix for round n (the start of the

game).

10 M. BROOM et al.



We will now consider some simpler examples

which can be evaluated more thoroughly. In all of

the following examples we will assume that the V
k
’s

decrease linearly with k, i.e. V
k – 1

– V
k
is constant so

that b
k

= b"k.

a) The Hawk–Dove game

We examine the knockout tournament where the

pairwise contests follow the classical Hawk–Dove

game of Maynard Smith (1982). In this game the

values of the parameters are as follows:

∆ = = > = = = ⇒1 2 0 011 12 21 22/ , ,c C c c c

⇒ = =C C C1 20 2, / .

C1 + C2 > 0 so that this game is of type (i), and thus

has exactly one candidate ESS. Thus the recurrence

relation for zk becomes

( )z
z

b p p

Cp

C

z
b

p
k

k
k k k

k
k k

+ = + + − − = + −1

2

2

1

2
1

1

4

1

2

2 2
.

If we further suppose that b < 1 (otherwise p
k
= 1 "k)

then p
1

= b and it is easy to show that z
k
must always

lie between 0 and 1 i.e.

p b p pk k k+ = + −1

1

2
1( ).

We first prove that the p
k

converge to some p as

k → ∞. If this is true, then we require p = b + p (1 –

p)/2, and so p2 + p – 2b = 0 ⇒

p
b= + −1 8 1

2

gives the equilibrium mixed strategy. Substituting

for b in the original recurrence relation, we obtain

p k+1 = p p p p pk k− − + −1

2
1

1

2
1( ) ( )

⇒ − +p p k 1 =
1

2

1

2

2−





 − + −p p p p pk k( ) ( )

⇒ − +p p k 1 ≤ 1

2

1

2

2

− − + −p p p p pk k

< p p p p p pk k k− + −





 ≤ −1

2

1

2

with equality only if p
k
= p, that is p

k
converges to p.

(If b
k

is not equal to b but converges to it, the same

argument will apply for p
k

provided that k is suffi-

ciently large.)

It can be shown that there are three different cases

depending upon the value of b:

(a) 0 < b ≤ 3/8: p
k

increases to a limit, p, say.

(b) 3/8 < b < (5 – 17)/2: p
k

initially increases to-

wards p and then approaches it in an oscillatory

fashion.

(c) (5– 17)/2 <b < 1: p
k
approaches p in an oscilla-

tory fashion.

In Broom et al. (2000) the case where V
k

– V
k + 1

=

= D "k was considered for both C = 2D and C = 4D,

each for n = 1, …, 6. We now revisit this example

and compare the two models. Note that here b
k

is

constant over k, and that b = D/C; we can thus use

the above working to find the candidate ESS for

each case. The ESO value of the probability of play-

ing Hawk in each round is shown in Table 1. The

ESO with k rounds to go is not affected by the total

number of rounds, and so the best play for any num-

ber of rounds n less than 6 is given by columns

headed 1, …, n in Table 1.

This yields the expected number of violent Hawk

versus Hawk contests as shown in Table 2. The cor-

responding values for the fixes strategy case are

shown by way of comparison. It is clear that there is

far more conflict in the variable strategy case than

the fixed strategy case, for identical tournament

EVOLUTION IN KNOCKOUT CONTESTS 11

TABLE 1

C = 2D, C = 4D the probability of playing Hawk in round k

k 1 2 3 4 5 6

C = 2D 0.5 0.625 0.617 0.618 0.618 0.618

C = 4D 0.25 0.344 0.363 0.366 0.366 0.366

TABLE 2

The proportion of Hawk v Hawk contests over the whole con-

flict; C = 2D and C = 4D

n 1 2 3 4 5 6 ∞

C = 2D, Fixed 0.25 0.282 0.280 0.270 0.262 0.257 0.252

C = 2D, Variable 0.25 0.344 0.365 0.374 0.378 0.380 0.382

C = 4D, Fixed 0.063 0.078 0.079 0.072 0.064 0.056 0.041

C = 4D, Variable 0.063 0.100 0.118 0.126 0.130 0.132 0.134



structures. Thus extra choice has greatly reduced the

payoffs to individuals. Of course, in a population of

fixed option players, an individual who plays a suit-

ably varied strategy would invade; evolution can re-

duce the fitness of the population.

b) Degenerate cases

b(i) If ∆ = 0 then a player has a probability of win-

ning of ½ whichever opponent it is playing i.e. the

reward V
i
attained is independent of the play so that

the game reduces to a series of pairwise games with

payoff matrix.

− −
− −











c c

c c

11 12

21 22

.

b(ii) If all the costs are zero then C
1

+ C
2

= 0 and

y
k + 1 =

y
k
/2 + a

k
. All the a

k
’s are positive (since ∆ > 0)

so that p
k

= 1 ∀ k.

c) Symmetric costs with

c
12

= c
21

= 0, c
11

= c
22

= C > 0.

Here players incur a cost if losing to an opponent

playing the same strategy, but not if they lose to an

opponent playing the other strategy, as is perhaps

reasonable since the latter can be easily and quickly

resolved.

c
11

= c
22

= C ⇒ C
1

= C
2

= C/2 > 0

z
z

b p pk
k

k k k+ = + + − −1
2

1∆ ( )

1

2

111 22

1 2

∆ c p c p

C C

k k+ −
+

=( )

z
b p pk

k k k
2

1
1

2
+ + − −∆ ∆( ) .

We have assumed that V
k

– V
k + 1

is constant over all

values of k. Define α by letting Cα = V
0

– V
1
, then

b
k

= 1/4 + ∆α so that

z
z

p pk
k

k k+ = + − + + −1
2

1

2

1

4
1∆ ∆ ∆α ( ).

For a very large number of rounds p
k

will tend to a

constant value which is given by the equation

p
p

p p= + − + + −
2

1

2

1

4
1∆ ∆ ∆α ( ),

if α is sufficiently small (otherwise p = 1 is the equi-

librium value). In case of the game when ∆ = 1/2 i.e.

p p p p= − + ⇒ =1

2

1

2

2 α α

for α < 1, otherwise p = 1. It follows that even

though the rewards are increasing in value and O
1
-

players have a better chance of progressing further

in the competition than O
2
-players for small α the

overwhelming number of players in the equilibrium

case play O
2

despite the symmetric appearance of

the costs. The reason for this is that for large values

of C the priority of the players is to leave the game

without incurring a cost, and for ∆ = ½ the only way

of achieving this is playing O
2

against a O
1
-player.

We now examine when such a candidate ESS

from case (i) is actually an ESS, considering the sim-

plest non-trivial case, namely the game with two

rounds.

2.4. Unstable equilibria

Consider the knockout game where there are two

rounds and two options. We assume that there is a

candidate ESS, labelled p, with (internal) ESOs p
1
in

round 1 and p
2

in round 2. Suppose that a group of

size ∈ playing q = (q
1
, q

2
) tries to invade a popula-

tion all of whose members play p. We evaluate the

expected payoff to a p-player minus the expected

payoff to a q-player and thus show when q can in-

vade. In particular we find conditions for when no

such q can invade i.e. when p is an ESS.

The mathematical arguments involved to show

this are in Appendix B. It is shown when q can in-

vade p, and that p is an ESS, if and only if

∆ ∆ ∆2
1

2
0 1 21( )V V c− + +






 −




1

2
212

1

2
1 2−












< +∆ c C C( ).

Note that V
2

does not appear in this inequality, so

that the value of V
2

does not affect whether our can-

didate ESS is in fact an ESS (of course V
2

affects the

value of p
2
; in particular p

2
is not internal unless V

2

lies within a certain range). For Example 1, we have

C
1
+ C

2
= 2 so that the right-hand side of the inequal-

ity is 2 2, while the left-hand side is 6, so that the

equilibrium strategy is not an ESS.

12 M. BROOM et al.



There is a parallel with extensive two-person

games here, although not an exact one. Van Damme

(1991) showed that an LSS is not always an ESS

(see Cressman and Schlag, 1998 for a discussion on

when backwards induction is a useful method to

solve extensive form games). He constructed an ex-

ample, similar to the knockout idea, where players

either played a second stage or stopped after the first

stage, depending upon play at the first stage. In this

game either both players play a second stage or nei-

ther do, the mutant invading by playing so that mu-

tant v mutant contests were likely to play the second

stage, and playing cooperatively in the second stage.

In our game the situation is different; a player can

only increase its chances of progressing at the cost

of its opponent. The mutants either play aggres-

sively at first, so that more mutants reach the next

stage, and then play passively or the converse, as in

Section 2.5. Thus the mutant can indirectly make it

marginally more (or less) likely that the next oppo-

nent it faces is also a mutant, and behave accord-

ingly. This is a less effective mechanism than that

available in the two-person extensive games, so it is

reasonable to think that the knockout models are

more likely to have ESSs.

2.5. Petal dynamics in knockout games

2.5.1. The replicator dynamic

Suppose that for a particular evolutionary game, the

strategies which a player may play are S
1
, …, S

n

(these may be pure strategies, or ‘allowable’ mix-

tures as in the example we consider). Let the propor-

tion of players of S
i
at a particular time be p

i
(i = 1,

…, n), so that the average population strategy is the

vector p = (p
i
), with the expected payoff (in terms of

Darwinian fitness) of an S
i
-player in such a mixture

being f
i
(p) and the overall expected payoff in the

population being F p p f pi i( ) ( )=∑ . Then the stan-

dard replicator dynamic (continuous) is defined by

the differential equation

dp

dt
p f p F pi

i i= −[ ( ) ( )].

Thus the proportion of players which play the better

strategies increases with time (what determines a

good strategy depends upon the composition of the

population). A point in n-dimensional space, repre-

sented by the vector p, is locally stable if it is an ESS

[this is not necessarily true for the discrete dynamic

(Zeeman, 1980)]. The replicator equation has been

applied in very many situations (see Hofbauer and

Sigmund, 1988).

We shall revisit Example 1. The parameters are

as follows:

V
0

= 7.5, V
1

= 6.5, V
2

= 0,

c
11

= 25, c
12

= 0, c
21

= 11, c
22

= 1, ∆ = 0.5.

We have previously shown that (0.5, 0.5) is a Nash

equilibrium but not an ESS. In order to study the

possible invasion of a population playing v by some

alternative playing u we need to evaluate W
2
(u, v)

the expected future payoff to a u-player who wins in

round 2. We have u = (u
1
, u

2
) and v = (v

1
, v

2
) and

W
2
(u, v) depends only on u

1
and v

1
, and is given by

W
2
(u, v) = (u

1
, 1 – u

1
) M

1
(v

1
, 1 – v

1
)T. (3)

To illustrate we shall consider the set of nine possi-

ble strategies r
ij
, (i, j = 1, 2, 3) where r

ij
plays x

i
in

round 1 and x
j
in round 2, where x

1
= 0.1, x

2
= 0.5 and

x
3
= 0.9. Thus r

22
is the Nash equilibrium. Under this

regime, we have from equation (3) that

W
2
(r

ij
, r

kl
) = (x

i
, 1 – x

i
) M

1
(x

k
, 1 – x

k
)T,

which we denote by W
2
(i, k), since there is no de-

pendence on j or l, and the matrix W
2

of W
2
(i, k) ele-

ments for i, j = 1, 2, 3 is given in this case by

25

137 25 87

145 25 95

153 25 103

W2 =
−
−

−
















.

Now consider round 2. For strategies which play i

and k in round 1 we have payoff matrix M
2
(i, k) in

round 2 given by

M 2

2 2

2

25 2

11 1 2
( , )

( ( , ) ) / ( , )

( ( , ) ) /
i k

W i k W i k

W i k
=

−
− −









 ,

which we write as

M
2
(i, k) = W

2
(i, k) A + B (4)

where A is the matrix of probabilities of winning

and B is the matrix of expected costs. Thus the ex-
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pected payoff for r
ij

in a population of r
kl

players,

which we denote by M
2
(r

ij
, r

kl
) is given by

M
2
(r

ij
, r

kl
) = (x

j
, 1 – x

j
) M

2
(i, k)(x

l
, 1 – x

l
).

Substituting from equation (4) we have

M
2
(r

ij
, r

kl
) = A

2
(j, l)W

2
(i, k) + B

2
(j, l)

where A
2
(j, l) = (x

j
, 1 – x

j
)A(x

l
, 1 – x

l
) and B

2
(j, l) =

= (x
j
, 1 – x

j
)B(x

l
, 1 – x

l
), A

2
(j, l) and B

2
(j, l) being the

probability of winning in round 2 and the expected

costs, for a j-player against an opponent playing l in

that round. The matrices A
2

and B
2
, are given by

A 2 =
















0 5 0 3 01

0 7 0 5 0 3

0 9 0 7 0 5

. . .

. . .

. . .

,

25

38 145 252

35 150 265

32 155 278

B2 =















.

The relative values of M
2
(r

ij
, r

kl
) =

(x
l
, 1 – x

j
)M

2
(i, k)(x

l
, 1 – x

l
) are given in Table 3.

By inspecting the entries in Table 3, we can iden-

tify those strategies which can invade any popula-

tion. A strategy u can invade a population playing v

if, in column-v (that is the column corresponding to

v) the entry in row-u exceeds that in row-v (i.e.

E[u, v] > E[v, v], or if these are equal then if, in col-

umn-u (that is the column corresponding to u) the

entry in row-u exceeds that in row-v (i.e. E[u, u] >

E[v, u]). For example only (1, 3) and (3, 1) can in-

vade (2, 2); that is only (0.1, 0.9) and (0.9, 0.1) can

invade the Nash equilibrium (0.5, 0.5). Table 4 con-

tains the complete set of information regarding

which strategies can invade which monomorphic

populations; if the entry in row (i, j) and column (k,

l) is + then the former can invade a population of the

latter.

We observe that there are sequences of strategies,

labelled {s
1
, s

2
, …, s

u
} say, such that su invades s

1

and s
i
invades si + 1 for i = 1, …, u – 1. In particular

{(0.5, 0.5), (0.5, 0.1), (0.9, 0.1)}

is such a set and we investigate the dynamics of this

particular set in more detail below.

2.5.2. Phase portraits for three strategies

For games with three strategies, the proportion in the

population of each of the strategies can be repre-

sented upon an equilateral triangle of unit height.

Since the triangle is equilateral the sum of the per-

pendicular distances from each edge is equal to the

height of the triangle, and thus is 1. Each strategy,

therefore, can be represented by one of the vertices

with the proportion of this strategy being the perpen-

dicular distance from the opposite edge. For exam-

ple, if the population all play strategy 1, then the cor-

responding point in the triangle is the vertex

representing that strategy; if the population plays

strategies 2 and 3 with equal probability, the corre-

sponding point is midway along the edge between

the vertices associated with strategies 2 and 3.

If we make a small disturbance away from the

equilibrium (adding a small proportion of players of

the other two strategies), the behaviour follows the

14 M. BROOM et al.

TABLE 3

Relative payoff of strategy (i, j) (row-label), in a population

of (l, k)-players (column-label)

(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)

(1, 1) 305 –255 –815 –1039 –1375 –1711 –2383 –2495 –2607

(2, 1) 345 –255 –855 –1015 –1375 –1735 –2375 –2495 –2615

(3, 1) 385 –255 –895 –991 –1375 –1759 –2367 –2495 –2623

(1, 2) 609 –175 –959 –815 –1375 –1935 –2239 –2575 –2911

(2, 2) 665 –175 –1015 –775 –1375 –1975 –2215 –2575 –2935

(3, 2) 721 –175 –1071 –735 –1375 –2015 –2191 –2575 –2959

(1, 3) 913 –95 –1103 –591 –1375 –2159 –2095 –2655 –3215

(2, 3) 985 –95 –1175 –535 –1375 –2215 –2055 –2655 –3255

(3, 3) 1057 –95 –1247 –479 –1375 –2271 –2015 –2655 –3295

TABLE 4

Specification of invasions possible

(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)

(1, 1) 0 – + – – + – + +

(2, 1) + 0 + – – + – + +

(3, 1) + – 0 – + + – + +

(1, 2) + + – 0 – + – + +

(2, 2) + + – + 0 + – + +

(3, 2) + + – + – 0 – + +

(1, 3) + + – + + – 0 – +

(2, 3) + + – + – – + 0 +

(3, 3) + + – + – – + – 0

If (and only if) the entry is + for row-label (i, j) and column label

(l, k) then the strategy (i, j) can invade a population of (l, k)-play-

ers.
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pattern in Figure 1, with its path in the shape of a

petal (at least for small disturbances). The popula-

tion can move very far from the equilibrium if most

of the introduced group plays (0.9, 0.1) no matter

how small the disturbance (if the group is entirely

(0.9, 0.1) then the population follows the edge of the

triangle until the whole population plays (0.9, 0.1)).

The size of the ‘petal’ decreases the larger the (0.5,

0.1) component in the added group, however as long

as this component is non-zero the population always

returns to the equilibrium. Hence even for a small

disturbance, the population can spend a long time

away from the equilibrium (which is unstable), but

the dynamic will move the population back to the

equilibrium eventually. This ‘petal’ phenomenon

was discussed in Hofbauer (1993). There is another

parallel with extensive two-person games here.

Cressman (1997) proved that under certain condi-

tions solutions obtained using backwards induction,

as in Selten (1983), were locally asymptotically sta-

ble, so that the evolutionary dynamic eventually re-

turned the population to such a solution, even if it

was not an ESS; this is precisely what happens in our

case.

2.6. The three-option case

We now briefly examine the knockout game where

there are three options to show how the ideas already

discussed can be adapted to consider more than two

options. The payoff matrix for players in a particular

round conditional upon future rounds is shown and

an outline of how to find ESOs is given. In general

there may be up to three (or indeed no) ESOs of a

round for the three-option case, conditional on the

play in lower numbered rounds. We then describe

the conditions for which every ESO includes all

three options (and is thus unique).

Finding the ESOs

The rewards, costs and the probability of victory

against other strategies are as described earlier in

this section. Let W
k
again be the expected payoff for

winning in round k. For 2-player matrix games, sub-

tracting a constant from every element in a column

of a matrix does not affect the ESSs of that matrix

(Zeeman, 1980). Thus subtracting a constant from

the matrix of payoffs for round k does not affect the

ESOs of that round. We shall subtract the leading di-

agonal element from each column. Then the three-

player game has the following payoff matrix for

round k:

( )
( )

( )
( )

M

c c

W V c

c c

W V c

k

k k k k

=

− +

− +

− −

− +
0

1 2 1 222 12

12 12

33 13

31 13

/ /

∆ ∆
( )
( )

( )
( )

1 2
0

1 2

1 2

11 21

12 21

33 23

23 23

/ /

/

c c

W V c

c c

W V ck k k k

− −

− +

− +

− +∆ ∆
( )
( )

( )
( )

c c

W V c

c c

W V ck k k k

11 31

31 31

22 32

23 32

1 2
0

− +

− +

− −

− +










∆ ∆

/



















.

Three strategy games and their ESSs are discussed

in Vickers and Cannings (1988), and their results

can be readily used to find the ESOs of the above

matrix.

An internal ESO is one in which the probability

of playing a given pure option is greater than zero

for all of the options. We can find a recurrence rela-

tion between ESOs in successive rounds in a similar

manner to Section 2.3. Defining r
k
= W

k
– V

k
and D

k
=

V
k

– V
k + 1

then equation (1) yields the following re-

currence relation for r
k
.

2r
k + 1

= r
k

+ 2D
k

– 2X
k

Thus, since r
1

= V
0

– V
1
, we can find the value of rk

for every round and it is shown in Appendix C that

there is an internal Nash equilibrium (p
1k

, p
2k

, p
3k

)

where

p
y

y y y
ik

ik

k k k

=
+ +1 2 3

FIG. 1. Trajectories of the composition of the population for a 2-

round knockout game with three strategies. The marked trajec-

tories represent invasions into a population of (0.5, 0.5)-players

by a small group containing (0.9, 0.1)-players and (0.5, 0.1)-

players. As the proportion of (0.9, 0.1)-players increases the

petal enlarges



and

y r C r Ck k k1 23 11 12= + +∆ ∆ 2

y r C r Ck k k2 31 21 22= + +∆ ∆ 2

y r C r Ck k k3 12 31 32= + +∆ ∆ 2

if y
ik

> 0∀ i, where all the parameters C
ij

and ∆
ij

are

defined in Appendix C.

The Nash equilibrium is also an ESO if the matrix

satisfies the negative-definiteness condition of

Vickers and Cannings (1988). This depends upon

the costs only, and so if satisfied for one round it is

satisfied for all and vice versa. Thus it is possible to

generate the unique Nash equilibrium for the whole

game.

3. Discussion

The knockout model provides an example of a situa-

tion where all conflicts in a population are pairwise,

but are organised into a structure and thus not inde-

pendent. This is not necessarily a realistic model of

the way natural populations behave, but rather gives

an insight into natural conflicts and how (and in

what way) behaviour may be much more complex

than that predicted by classical 2-player game the-

ory. The dependence between games leads to behav-

iour which is qualitatively different to that from con-

tests where the pairwise contests are independent.

It was shown in Broom et al. (2000) that there

may be more or less aggression in a population play-

ing a contest with a knockout format than in inde-

pendent pairwise games, providing that there is no

possibility of adjusting the strategy from round to

round, depending upon the number of players and

the rewards and costs involved. In Section 2.3 we

see that when there is free choice of behaviour from

round to round, the level of aggression increases the

more rounds there are, and is more than for inde-

pendent contests. Thus this freedom is damaging to

the individuals, but will nonetheless evolve into the

population.

In Section 2.3 it is shown that for a population or-

ganised into an n round knockout tournament with

two available options, in the variable option case

there may be as many as 2n ESSs, but there is a sim-

ple commonly satisfied condition which if satisfied

guarantees at most one ESS. It is shown in Section

2.4 that there might be no ESS at all (in 2-player

game theory there is always an ESS when there are

two strategies). It appears that any Nash equilibrium

is less likely to be an ESS than for classical theory,

since even the existence of a sequence of ESOs is not

sufficient to guarantee an ESS. Thus there are extra

conditions to be met for a strategy to be an ESS than

in 2-player game theory. In particular a completely

internal equilibrium is especially susceptible to in-

vasion; the more pure options involved in the ESOs

which make up the Nash equilibrium strategy the

more susceptible it is (similarly, the more rounds,

the more susceptible it is). Thus in real populations

the number of observed options which occur in real-

ity might be lower if there is a structure to the games

that are played. However, it should be noted that

there is a reverse tendency as well, since different

pure options may be involved in the ESO for differ-

ent rounds, thus increasing the overall number of

pure options used in total.

As we have seen, the game can be very complex

if players are able to change their strategies from

round to round. For two options, strategies are vec-

tors not just single numbers (for more than two op-

tions they are matrices rather than vectors). A recur-

sive dynamic programming method was found

which specifies all the candidate ESSs of a game.

Showing when a candidate ESS is actually an ESS is

a harder problem. In Section 2.4 we do this for the

2 round case. The method used can be generalised to

more rounds, but calculations quickly become

complicated. Section 2.5 shows that the dynamics

of these games is also more complex than those

for 2-player games. Indeed the example given is

the simplest possible non-trivial knockout game (2-

round, 2-option ∆ = ½) and it is to be expected that

even more complicated behaviour will result from a

more complex game. There is an interesting corre-

spondence between the knockout model and the ex-

tensive two-person game of Selten (1983), which

deserves to be explored further.
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APPENDIX

A) A recurrence relation for yk

The following argument finds a recurrence relation

for y
k
. In general for a population playing the mixed

strategy (p
1
, …, p

n
) each placer has a probability of

½ of being eliminated in any round, and the ex-

pected cost for a player in round k is

X p
c

p
c

k k k= + − +2 11 2 22

2
1

3
( )

p p c ck k( ) .1
1

2

1

2
21 12− +






 + −
















∆ ∆

It follows that

W
V V V V

k
k k

k k
= + + + + −− −

− −
1 2 1

1

0

12 4 2 2
...

− = −
− −

=

−

∑X v Yi k i k k

i

k 1

2 1
1

1

where

Y
X

k
k

k i
i

k

=
− −

=

−

∑
2 1

1

1

Y
k

is thus the expected future cost incurred by a

player which wins in round k and

Y
X

Y
Y

Xk
k

k i
i

k

k
k

k= ⇒ = +
− −

=

−

+∑
2 21

1

1

1 .

It is now possible to find y
k + 1

in terms of yk.

W v Y
v V Y

k k k
k k k

+ + += − = + − −1 1 1
2 2 2

− = + −X v V vk k k k( )2 1

⇒ = + −+W
W V

Xk
k k

k1
2 2

⇒ − = − ++ +2 1 1( ) ( )W V W Vk k k k

2 21( )V V Xk k k− −+

⇒ + − =+ +2 21 1 1C W Vk k∆( )

= − + + − + −+∆ ∆ ∆( ) ( )W V C V V C Xk k k k k1 1 12 2

⇒ = + −+y
y

a Xk
k

k k1
2

∆

(a
k

is as defined in Section 2.3).

We now rearrange the expression X
k
to get it into

a more manageable form.

X p
c

p
c

k k k= + − +2 11 2 22

2
1

2
( )

p p c ck k( )1
1

2

1

2
21 12− +






 + −
















∆ ∆

= + +p C Ck

2

1 2( )

p C C
c c c

k − − + −





 +1 2

11 22 22

2 2 2

⇒ = − + − +X C C p pk k k( ) ( )1 2 1

1

2
111 22[ ( )].c p c pk k+ −

B) Conditions for an ESS for the 2 round

2-player game

Notation

We define and then evaluate a series of terms which

help us to find whether p is an ESS.

h
i
: the proportion of O1-players in round i,

i = 1, 2.

g
i
(r): the probability of an r-player playing in

round i winning, i = 1, 2, r = p or q.

vi(r): the expected contribution to the payoff of an

r-player of a loss in round i, i = 1, 2, r = p or

q.

E(r): the expected total payoff of an r-player in

the game, r = p or q.

Also define u
1
= (p

1
– q

1
)[1 – 2 ∆(p

2
– q

2
)] and u

2
=

(p
2

– q
2
).

The above expressions can be used to find the

payoff functions E(p) and E(q), and in particular

their difference.

E(p) = v
2
(p) + v

1
(p) + g

2
(p)g

1
(p)V

0
,

E(q) = v
2
(q) + v

1
(q) + g

2
(q)g

1
(q)V

0

⇒ E(p) – E(q) =

[v
2
(p) – v

2
(q)] + [v

1
(p) – v

1
(q)] +

+ [g
2
(p)g

1
(p) – g

2
(q)g

1
(q)]V

0
. (5)
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ESS conditions

Thus we nee to evaluate all the terms given in (5).

These equations are labelled (6–18); some lower

numbered equations are required to solve those

which come later. An indication of which (if any)

are required is given after each equation.

h p q p u2 2 2 2 21= − + = −( )ε ε ε (6)

g p h p q2 2 2 2 2

1

2

1

2
( ) ( ) ( )p = + − = + −∆ ∆ε

= +1

2
2∆εu (7)

using (6).

g q h p q2 2 2 2 2

1

2

1

2
1( ) ( ) ( )( )q = + − = − − −∆ ∆ ε

= − −1

2
1 2∆ ( )ε u (8)

using (6).

h p g q g1 1 2 1 22 1 2= − +( ) ( ) ( )ε εp q

= − − + − − −p p q p q p q1 1 1 2 2 1 12 1ε ε ε( ) ( ) ∆( )( )

= − − −p u u p q1 1

2

2 1 12ε ε ∆ ( ) (9)

using (7) and (8).

g p h1 1 1

1

2
( ) ( )p = + − =∆

= + + −1

2
21

2 2

2 1 1∆ ∆ε εu u p q( ) (10)

using (9).

g q h1 1 1

1

2
( ) ( )q = + − =∆

= − − + + −1

2
21 1 1

2 2

2 1 1∆ ∆ ∆( ) ( )p q u u p qε ε (11)

using (9).

v V c p h2 2 11 2 2

1

2
( ) ( )p = − +

1

2
12 12 2 2−






 − − +∆ ( ) ( )V c p h

1

2
12 21 2 2+






 − − +∆ ( )( )V c p h

1

2
1 12 22 2 2( )( )( )V c p h− − − (12)

using (6).

v V c q h2 2 11 2 2

1

2
( ) ( )q = − +

1

2
12 12 2 2−






 − − +∆ ( ) ( )V c q h

1

2
12 21 2 2+






 − − +∆ ( )( )V c q h

1

2
1 12 22 2 2( )( )( )V c q h− − − (13)

using (6).

v g V c p h1 2 1 11 1 1

1

2
( ) ( ) ( )p p= − +




1

2
11 12 1 1−






 − − +∆ ( ) ( )V c p h

1

2
11 21 1 1+






 − − +∆ ( )( )V c p h

1

2
1 11 22 1 1( )( )( )V c p h− − − 




(14)

using (7) and (9).

v g V c q h1 2 1 11 1 1

1

2
( ) ( ( )q q)= − +




1

2
11 12 1 1−






 − − +∆ ( ) ( )V c q h

1

2
11 21 1 1+






 − − +∆ ( )( )V c q h

1

2
1 11 22 1 1( )( )( )V c q h− − − 




(15)

using (8) and (9). We can now combine the above

expressions and then substitute into equation (5).
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v v p q c c2 2 2 2 11 21

1

2

1

2
( ) ( ) ( )p q− = − − + +






 +








∆

1

2

1

2
12 22 2−






 − 


 +∆ c c h

1

2

1

2
22 12 2c c V− −






 − 




∆ ∆

= − − + + −( )[ ( ) ]p q h C C y W2 2 2 1 2 2 2∆

= + −u u C C W2 2 1 2 2[ ( ) ]ε ∆

using (12) and (13).

v v1 1( ) ( )p q− =

( ( ( )[ ( )g p g q h C C2 1 2 1 1 1 2p) q)− − + +

y W1 1− +∆ ]

[ ( ) ( )] ( )g g h V c2 2 1 1 21

1

2
p q− − +






 +


 ∆

( )( )1
1

2
1 1 22− − 


h V c

= + −





 − +









1

2
2 2 1 1 2 1∆ ∆ ∆εu u p q u p( )

{[ ( )]ε εu u p q1

2

2 1 12+ −∆

( ) } ( )C C V u p V c1 2 0 2 1 1 21

1

2
+ − + − +












∆ ∆ ∆

+ − − − + −( )( ) [ ( )]1
1

2
21 1 22 1

2

2 1 1p V c u u p qε ε ∆

( ) ( )V c V c1 21 1 22

1

2

1

2
− +






 − −












∆ (17)

g g g g2 1 2 1( ) ( ) ( ) ( )p p q q− =

1

2

1

2
2 1+






 +





 −∆ ∆ε εu u

1

2

1

2
11 1 1 2− − +






 − −





∆ ∆ ∆( ) ( )p q u uε ε

= + + + − +1

2

1

2
2 1

2

2 1 1 1

2∆ ∆ ∆u u u u p q Oε ε[ ( )] ( ). (18)

Using the equations (16)–(18) we can express

equation (5) as follows (ignoring terms in ε2 and

higher orders).

E E u W( ) ( ) {p q− = − +∆ 2 2

1

2

1

2
2 0 2 1 1 21u V u p V c+ − +






 +


 ( ) ∆

( )( ) }1
1

2
1 1 22 0 1− − − 


 +p V c V p∆

ε{ ( ) ( ( ))u C C u u p q V2

2

1 2

2

2 1 1 1 0+ + + − −∆

∆ ∆u u V c V c2 1 1 21 1 22

1

2

1

2
( ) ( )− +






 − −







 +

1

2
1

2

1 2

2

2 1 1 0u C C u p q V( ) ( ) }.+ − −∆ (19)

The constant term in equation (19) is ∆u
2

multiplied

by (–W
2
+ the payoff to a O

2
-player in the final when

everyone plays p = (p2, p1)). Note that the probabil-

ity of winning in the final for a O
2
-player in this case

is ½ – ∆p1. But W
2

is the expected payoff to a player

which wins in the first round, i.e. reaches the final

when everyone plays p. Since p is the equilibrium

strategy the payoff to O
1
-players in the final is the

same as that to O
2
-players, and thus equals W

2
.

Hence the constant term is zero.

Therefore the difference in the payoffs E(p) –

E(q) reduces to the term in ε, i.e.

E E u C C u C C( ) ( ) ( ) ( )p q− = + +



+ +ε 2

2

1 2 1

2

1 2

1

2

∆ ∆u u V V p C C1 2 0 1 1 1 2[ ( ) ( )− + + +

1

2

1

2
21 22+






 − 




∆ c c ] .

Using the fact that

p
V V C

C C
1

0 1 1

1 2

= − +
+

∆( )
,

E E u C C u C C( ) ( ) { ( ) ( )p q− = + + + +ε 2

2

1 2 1

2

1 2

1

2

∆ ∆ ∆u u V V c1 2 0 1 212
1

2
( )− + +






 −




1

2
12−











∆ c }. (20)

Using an alternative substitution we obtain

E E u C C u C C( ( ( ) ( )p) q)− = + + + +ε{ 2

2

1 2 1

2

1 2

1

2

∆u u p C C c c1 2 1 1 2 11 222 1
1

2

1

2
( )( ) }.− + + −




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From (20) the third term is positive when ∆ = ½ i.e.

( )( )2 1
1

2

1

2
01 1 2 11 22p C C c c− + + − >

⇒ − > − +1

2

1

2
11 22 1 2c c C C( ).

The expression (21) is thus positive if u
1

and u
2

have

the same sign. For a strategy q = (q
1
, q

2
) to invade the

equilibrium, therefore, the probability of playing op-

tion O
1

must be greater than that for the equilibrium

in one round and less than that for the equilibrium

for the other round. It is possible under some condi-

tions to find such a strategy (see below).

Expression (20) is a quadratic equation in u
1

and

u
2
. It is positive for all u

1
and u

2
, i.e. p is an ESS, if

and only if

∆ ∆ ∆{ ( )2
1

2
0 1 21V V c− + +






 −

− −





 < +1

2
212

1

2
1 2∆ c C C} ( )

(in fact u
1

and u
2

are bounded, but u
1
/u

2
is not).

C) 3-strategy ESOs

We define the following parameters:

Let c c i jij ij ij

∗ = − ∀( ) ,1 2∆ and let

∆ ∆ ∆ ∆= + +12 23 31. Further let Cij

i = 1, 2, 3; j = 1, 2 be defined as follows:

C c c c c c c11 12 23 13 22 32 33

1

2
2 2= − − + − + +∗ ∗ ∗ ∗( ),

C c c c c c c c c c c c12 12 23 13 32 22 33 12 33 13 22 2

1

4
= + + − − −∗ ∗ ∗ ∗ ∗ ∗( 3 32

∗ ∗c ),

C c c c c c c21 23 31 21 33 13 11

1

2
2 2= − − + − + +∗ ∗ ∗ ∗( ),

C c c c c c c c c c c c22 23 31 21 13 33 11 23 11 21 33 3

1

4
= + + − − −∗ ∗ ∗ ∗ ∗ ∗( 1 13

∗ ∗c ),

C c c c c c c31 31 12 32 11 21 22

1

2
2 2= − − + − + +∗ ∗ ∗ ∗( ),

C c c c c c c c c c c c32 31 12 31 21 11 22 31 22 32 11 1

1

4
= + + − − −∗ ∗ ∗ ∗ ∗ ∗( 2 21

∗ ∗c ).

In Vickers and Cannings (1988) the 3-strategy pay-

off matrix is written as

0

0

0

a b

c d

e f

















and it is shown that for there to be an internal ESO it

is required that

ad + bf – df > 0,

ae + cf – ac > 0,

and bc + de – be > 0.

Let y
1k

= ad + bf – df, then

y, k c c c c c c c c c c= + − − +∗ ∗ ∗ ∗1

4
22 33 12 23 12 33 22 23 22 33(

− − + − −∗ ∗ ∗ ∗ ∗ ∗c c c c c c c c c c13 22 32 33 13 32 22 33 23 32

+ +∗ ∗c c c c22 23 32 33 )

+ − + +( ) ( )W Vk k

2

12 23 23 31 23

2∆ ∆ ∆ ∆ ∆

+ − − + − −∗ ∗1

2
22 12 33 23 33( )(W V c c c c ck k

+ − + + − − +∗ ∗ ∗ ∗c c c c c c c13 22 32 33 23 22 32 )

= − + − +( ) ( ) .W V W V C Ck k k k

2

23 11 12∆ ∆

Defining y
2k

= ae + cf – ac and y3k = bc + de – be and

using cyclic symmetry it is easy to show that

y W V W V C Ck k k k k2

2

31 21 22= − + − +( ) ( )∆ ∆

and y W V W V C Ck k k k k2

2

12 31 32= − + − +( ) ( )∆ ∆

i.e.

y r C r Ck k k1 23

2

11 12= + +∆ ∆ ,

y r C r Ck k k2 31

2

21 22= + +∆ ∆

and y r C r Ck k k3 12

2

31 32= + +∆ ∆ .

If y
ik

> 0 ∀ i then (p
1k

, p
2k

, p
3k

) is an internal Nash

equilibrium where

p
y

y y y
ik

ik

k k k

=
+ +1 2 3

.

Note that for this strategy to be an internal ESS, the

matrix must satisfy the negative-definiteness condi-
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tion that ( )a c+ , ( )b e+ and ( )d f+ must

form a triangle. Each of these terms only depends

upon the costs cij, so that if the condition is satisfied

by M
k

for any k, it is satisfied for all k.
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