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Abstract

Building on arXiv:0912.1723 [1], in this paper we investigate the AdS3/CFT2 cor-
respondence using integrability techniques. We present an all-loop Bethe Ansatz
(BA) for strings on AdS3 × S3 × S3 × S1, with symmetry d(2, 1;α)2, valid for all
values of α. This construction relies on a novel, α-dependent generalisation of the
Zhukovsky map. We investigate the weakly-coupled limit of this BA and of the
all-loop BA for strings on AdS3 × S3 × T 4. We construct integrable short-range
spin-chains and Hamiltonians that correspond to these weakly-coupled BAs. The
spin-chains are alternating and homogenous, respectively. The alternating spin-
chain can be regarded as giving some of the first hints about the unknown CFT2

dual to string theory on AdS3 ×S3×S3 ×S1. We show that, in the α → 1 limit, the
integrable structure of the d(2, 1;α)2 model is non-singular and keeps track of not
just massive but also massless modes. This provides a way of incorporating mass-
less modes into the integrability machinery of the AdS3/CFT2 correspondence.

http://arxiv.org/abs/1106.2558v2


1 Introduction

The gauge/string duality [2–5] offers a fundamentally new approach to understanding
strongly-coupled systems. The strongly coupled system is believed to have a gravita-
tional dual; in this gravitational dual one is often able to compute quantities which
are physically important but difficult to compute in the original strongly coupled sys-
tem. While conceptually striking, it is at present not clear how general this approach
is. Over the last few years some of the most powerful evidence for the gauge/string
correspondence has come from the study of the maximally supersymmetric example:
3 + 1-dimensional N = 4 Super-Yang-Mills (SYM) superconformal field theory (SCFT)
and its dual Type IIB string theory on AdS5 × S5. In this example, using integrability
techniques, a proposal exists which can be used to calculate anomalous dimensions of
generic, unprotected, gauge theory operators and match them with the energies of string
states in the dual gravitational spacetime.1 This proposal has a passed a large number
of stringent tests [7–11]. This remarkable progress allows for the calculation of quanti-
ties at all values (small, intermediate and large) of the gauge theory coupling (see for
example [11–14]), and provides some of the strongest evidence for this particular duality.
More importantly, the integrability approach provides a description of how gauge/string
duality actually works in practice.

Following the success of the integrability approach in the above mentioned maximally
supersymmetric example, other dual pairs have been investigated using these techniques:
these included duals involving 3+1-dimensional gauge theories with less supersymmetry,
and 2 + 1-dimensional super-Chern-Simons with matter theories. It has been found that
in all these examples the anomalous dimensions of operators in the field theory, and
the energies of the corresponding string states are encoded in a Bethe Ansatz (BA). At
small values of the coupling constant the BA reduces to that of an integrable short-range
interaction spin-chain. At large values of the coupling, in the thermodynamic limit, it
is best described by finite-gap equations which follow from the classical integrability of
the string equations of motion.2 A recent review of the developments in this field can
be found in [15]. For another recent application of the algebraic approach to spacetimes
with less supersymmetry see [16].

In this paper we will investigate string theories on backgrounds with an AdS3 factor
which preserve 16 supersymmetries and their CFT2 duals using the integrability ap-
proach.3 This programme was initiated in [1].4 One of the main conceptual advantages
of this approach is that one can investigate the dual pairs without having to perform an
S-duality on the gravitational side. Most previous investigations of the AdS3/CFT2 cor-
respondence used WZW models for string theory (with NS-NS flux) on AdS3 which are

1The results based on integrability techniques are limited to the planar limit of the gauge theory, in
the spirit of ’t Hooft’s original suggestion about using 1/N2 as a small expansion parameter [6].

2The string equations of motion in these settings turn out to be equivalent to a flat Lax connection.
3The AdS3/CFT2 correspondence has been extensively studied since the early days of the

gauge/string correspondence; see for example [17–23].
4For earlier work on integrability in this context see [24,25] and more recently [26]. Integrability has

also recently been investigated in the context of the hybrid string formulation on AdS3 × S3 in [27–29]
and for classical strings in the BTZ black hole background [30]
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S-dual to string theory with R-R flux. In the context of the AdS3/CFT2 correspondence,
the strong coupling dual of the SymN(T 4) CFT2 is IIB string theory on AdS3 × S3 × T 4

with R-R flux. As a result, tests of this duality for unprotected quantities should in the
first instance be done for string theory in the R-R background; this is the analogue of
the planar limit in the AdS5/CFT4 duality.

There are in fact two types AdS3 geometries which preserve 16 supersymmetries:
AdS3 ×S3 × T 4 and AdS3 ×S3 ×S3 × S1.5 The two backgrounds preserve, respectively,
small and large (4, 4) superconformal symmetry; correspondingly, the finite-dimensional
sub-algebras of these superconformal algebras are psu(1, 1|2)2 and d(2, 1;α)2. The su-
peralgebras d(2, 1;α) depend on a parameter α which is related to the relative size of
the radii of the geometry [31]. Denoting by l the AdS3 radius and by R± the radii of the
two S3’s the background solves the supergravity equations of motion when

1

R2
+

+
1

R2
−

=
1

l2
. (1.1)

In terms of these geometric quantities, α is defined as

α =
l2

R2
+

≡ sin2 φ ,
l2

R2
−

≡ cos2 φ . (1.2)

A candidate CFT2 dual to string theory on AdS3 × S3 × T 4 is a sigma model on the
moduli space of Q1 ∈ N instantons in a U(Q5) gauge theory on T 4; this is a natural
choice given that the AdS3 × S3 × T 4 background arises as the near-horizon limit of Q1

D1-branes coincident with Q5 D5-branes. On the other hand, very little is known about
the CFT2 dual of the AdS3 ×S3 ×S3 ×S1 background.6 Some reasons for this ignorance
are discussed in [37]; one of the main obstacles to identifying a suitable CFT2 is that the
supergravity approximation to the full string theory is not as useful in this case as in
other examples – for example the BPS states of the finite dimensional sub-algebra of the
full superconformal algebra need not be BPS in the full large super-Virasoro algebra!

In [1], it was found that string theory on the two AdS3 backgrounds could be treated
on equal footing: equations of motion for Green-Schwarz strings on both backgrounds
could be written as flatness conditions for a Lax connection.7 From this a set of finite-gap
integral equations was formulated. In the case of the AdS3 ×S3 ×T 4 background as well
as the AdS3 ×S3 ×S3 ×S1 background with the radii of the two S3 factors equal it was
possible to use the integral equations to postulate an all-loop discrete BA much as was
done for the case of the AdS4/CFT3 duality in [49]. This BA may be viewed as giving
some of the first concrete prediction for what the elusive CFT2 dual to the equal radius

5For the purpose of the present paper the AdS3 ×S3 ×K3 background can be treated as an orbifold
of AdS3 × S3 × T 4 and shares many of it’s features.

6Early work on this backgorund and its dual description can be found in [18, 31–36].
7GS actions for strings in curved spacetimes were first constructed in [38,39]. However, these require

the knowledge of the complete super-geometry rather than just the bosonic spacetime solution, making
it harder to use them. An algebraic approach to GS actions in flat [40] and curved spacetimes [1,41–45]
leads to much simpler, though equivalent [46], expressions in spacetimes with enough (super-)symmetry.
This algebraic approach has proven to be particularly useful since it leads to Lax-integrable equations
of motion [47] due to the existence of a Z4-automorphism on the underlying supercurrents [48].
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AdS3 × S3 × S3 × S1 background should be like. There were however two unresolved
puzzles. Firstly, how to generalise the BA construction when the radii of the two S3

factors were not equal. Secondly, it was found that the string worldsheet theory on these
backgrounds has a number of massless modes8 which were not incorporated into the
finite-gap (and hence also into the BA) equations. This second problem highlights the
fact that at present we do not know how to incorporate massless worldsheet excitations
into the integrability approach to the gauge/string correspondence.

In this paper we extend the integrability analysis of the AdS3/CFT2 correspondence
begun in [1]. In section 2 we find a discrete all-loop BA, valid for all values of the radii
of the two S3’s. We show that at strong coupling in the thermodynamic limit this BA
reduces to the finite-gap integral equations that follow from the Lax-pair formuation of
the GS string on AdS3 ×S3 ×S3 ×S1. These results resolve the first of the above puzzles.

In order to gain insight into what a CFT2 dual to these backgrounds should be like, in
section 2.2 we obtain the weak-coupling limit of the all-loop BA of section 2. In section 3
we construct an alternating spin-chain, together with an integrable Hamiltonian. We
show that the BA for this Hamiltonian matches the weak coupling limit of the all-
loop BA of section 2.2. The construction of the Hamiltonian is first done in an sl(2|1)
subsector of the theory and then lifted to the full d(2, 1;α)2 spin-chain. It relies on the
universal R-matrix of sl(2|1) first found in [56]. A novel feature of the spin-chain we
construct is that it has both left- and right-moving momenta, much as one would expect
for a CFT2. We expect that these results will be useful in the eventual identification
of the correct CFT2. At the equal-radius value α = 1/2 the superalgebra is in fact
osp(4|2)2. Restricting to just one osp(4|2) factor the spin-chain we construct is closely
related to the ABJM spin-chain constructed in [57]. We discuss the relation of our BA
and spin-chain to that of the ABJM BA and spin-chain in section 3.

In section 5 we consider the AdS3 × S3 × T 4 dual pair. In particular, in section 5.1,
we show how the weakly coupled BA equations for this background [1] can be obtained
as the α → 1 limit of the AdS3 ×S3 ×S3 ×S1 BA equations. In section 5.2 we construct
a spin-chain whose energies are described by the weakly coupled AdS3 × S3 × T 4 BA
equations. The spin-chain in this case is not alternating; instead it is homogenous. It
would be very interesting to see how such a spin-chain emerges from the recent analysis of
the weakly-coupled CFT2 [58]. When restricted to just the left- or right-movers this spin-
chain is closely related to the psu(1, 1|2) spin-chain one encounters in N = 4 SYM [59].
Finally, in section 5.3, we make a proposal for how to incorporate massless modes into
the integrable description of the gauge/string correspondence. We argue that the missing
massless modes puzzle can be resolved by keeping track of the integrable structure of the
alternating d(2, 1;α)2 spin-chain in the α → 1 limit.

In section 6 we explore some of the features of the weak-coupling BA: we find twist-
one solutions in a closed sl(2) subsector, which are important in the identification of the
spin-chain as an alternating chain; we find a degeneracy in the spectrum of states that
is similar in nature the degeneracy of states in the ABJM model [60]; we investigate
the behaviour of certain simple solutions to the BA equations in the α → 1 limit. We
conclude in section 7. Some of the technical details are relegated to the appendices.

8The appearance of these massless modes is most easily seen from the plane-wave analysis [1,50–55].
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2 All-loop Bethe equations for d(2, 1; α)2

In this section we propose an all-loop BA for d(2, 1;α)2. We show that in the continuum
limit this BA reproduces the finite-gap equations obtained from the GS string constructed
in [1]. We also obtain the weak-coupling limit of the all-loop BA. In this limit, the all-
loop BA reduces to a conventional BA for d(2, 1;α)2 in a particular representation.9 The
weights of the representation relevant to our case can then be easily read-off. This will
in turn be useful in the construction of a spin-chain for the small-coupling BA which we
do in the following section.

In [1] a set of Bethe equations for the coset model on OSp(4|2)2 were proposed:

(

x+
1,i

x−
1,i

)L

=
K1
∏

k=1
k 6=i

x+
1,i − x−

1,k

x−
1,i − x+

1,k

1 − 1
x+

1,i
x−

1,k

1 − 1
x−

1,i
x+

1,k

σ2(x1,i, x1,k)

×
K2
∏

k=1

x−
1,i − x2,k

x+
1,i − x2,k

K2̄
∏

k=1

1 − 1
x−

1,i
x2̄,k

1 − 1
x+

1,i
x2̄,k

K1̄
∏

k=1

σ−2(x1,i, x1̄,k) ,

(2.1a)

1 =
K1
∏

k=1

x2,i − x+
1,k

x2,i − x−
1,k

K3
∏

k=1

x2,i − x+
3,k

x2,i − x−
3,k

K1̄
∏

k=1

1 − 1
x2,ix

+

1̄,k

1 − 1
x2,ix

−

1̄,k

K3̄
∏

k=1

1 − 1
x2,ix

+

3̄,k

1 − 1
x2,ix

−

3̄,k

, (2.1b)

(

x+
3,i

x−
3,i

)L

=
K3
∏

k=1
k 6=i

x+
3,i − x−

3,k

x−
3,i − x+

3,k

1 − 1
x+

3,i
x−

3,k

1 − 1
x−

3,i
x+

3,k

σ2(x3,i, x3,k)

×
K2
∏

k=1

x−
3,i − x2,k

x+
3,i − x2,k

K2̄
∏

k=1

1 − 1
x−

3,i
x2̄,k

1 − 1
x+

3,i
x−

2̄,k

K3̄
∏

k=1

σ−2(x3,i, x3̄,k) ,

(2.1c)





x−
1̄,i

x+
1̄,i





L

=
K1̄
∏

k=1
k 6=i

x+
1̄,i

− x−
1̄,k

x−
1̄,i

− x+
1̄,k

1 − 1
x+

1̄,i
x−

1̄,k

1 − 1
x−

1̄,i
x+

1̄,k

σ2(x1̄,i, x1̄,k)

×
K2̄
∏

k=1

x−
1̄,i

− x2̄,k

x+
1̄,i

− x2̄,k

K2
∏

k=1

1 − 1
x−

1̄,i
x2,k

1 − 1
x+

1̄,i
x−

2,k

K1
∏

k=1

σ−2(x1̄,i, x1,k) ,

(2.1d)

1 =
K1̄
∏

k=1

x2̄,i − x+
1̄,k

x2̄,i − x−
1̄,k

K3̄
∏

k=1

x2̄,i − x+
3̄,k

x2̄,i − x−
3̄,k

K1
∏

k=1

1 − 1
x2̄,ix

+

1,k

1 − 1
x2̄,ix

−

1,k

K3
∏

k=1

1 − 1
x2̄,ix

+

3,k

1 − 1
x2̄,ix

−

3,k

, (2.1e)





x−
3̄,i

x+
3̄,i





L

=
K3
∏

k=1
k 6=i

x+
3̄,i

− x−
3̄,k

x−
3̄,i

− x+
3̄,k

1 − 1
x+

3̄,i
x−

3̄,k

1 − 1
x−

3̄,i
x+

3̄,k

σ2(x3̄,i, x3̄,k)

×
K2
∏

k=1

x−
3̄,i

− x2̄,k

x+
3̄,i

− x2̄,k

K2̄
∏

k=1

1 − 1
x−

3̄,i
x2,k

1 − 1
x+

3̄,i
x−

2,k

K3̄
∏

k=1

σ−2(x3̄,i, x3,k) .

(2.1f)

9BA equations for any (super)-algebra in certain classes of representations have been proposed in [61].
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Here σ(x, y) is a dressing phase factor10, and the variables x±
l,i satisfy

x±
l,i +

1

x±
l,i

= xl,i +
1

xl,i
± i

2h
, (2.2)

where h = h(λ) is a function of the worldsheet coupling constant λ. At large coupling it
behaves as

h(λ) ≈
√
λ

2π
, (λ → ∞) . (2.3)

We will assume that h(λ) → 0 as λ → 0, so that there is a weak coupling limit of the
Bethe equations.

Given a solution of (2.1), the corresponding total energy E and momentum P is given
by

E = ih
∑

l=1,3,1̄,3̄

Kl
∑

j

(

1

x+
l,j

− 1

x−
l,j

)

, (2.4)

eiP =

∏

l=1,3
∏

l=1̄,3̄

∏

j

x+
l,j

x−
l,j

≡ 1 . (2.5)

We here propose a generalization of the above equations to the full symmetry group
D(2, 1;α)2 for any α. The Bethe equations, energy and momentum take exactly the same
form as in (2.1), (2.4) and (2.5) respectively. However, the Zhukovsky map in (2.2) is
deformed to

x±
l,i +

1

x±
l,i

= xl,i +
1

xl,i
± iwl

2h
, (2.6)

where
w1 = w1̄ = 2α , w3 = w3̄ = 2(1 − α) . (2.7)

Since x±
2 and x±

2̄ do not appear in (2.1), we do not need to specify w2 and w2̄. The
elementary magnons now have the dispersion relation

ǫl(p) =

√

m2
l + 4h2 sin2 p

2
, (2.8)

where the masses are

m2
1 = α , m2

3 = 1 − α . (2.9)

2.1 Classical Bethe equations for d(2, 1; α)2

Effectively, the above generalization of the Bethe equations from osp(4|2)2 to d(2, 1;α)2

takes the form of a rescaling of the coupling that varies between the different Dynkin

10In general the dressing phase can take a different form than the BES/BHL dressing phase [62, 63]
that appears in N = 4 SYM and ABJM. As we will see below, the classical limit of the BA requires the
leading strong coupling behavior of σ to be given by the AFS phase [64].
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nodes. The classical limit will be almost identical in the two cases. For large h, x±

behave as

x±
l,i = xl,i ± iwl

2h

x2
l,i

x2
l,i − 1

+ O(1/h2) . (2.10)

Expanding the Bethe equations, the only effect of the extra factor wl will be an overall
factor for each factor in the equations.

There are two important points that makes this limit work out. Firstly, there is no
direct link between the x2,i and x3,k roots in the Bethe equations. Secondly, the dressing
phase only links nodes in the Dynkin diagram that are associated with the same value of
wl (i.e., it either involves two roots xl,i and xl,k at the same node, or one root xl,i from
one copy of d(2, 1;α) and another root xl̄,k from the corresponding node of the second
copy of d(2, 1;α).)

The only subtlety is in the coupling dependence of the dressing phase. To get a nice
form in the strong coupling limit we need to rescale the explicit coupling dependence in
the phase coupling xl,i with xl,k or xl̄,k by a factor 1/wl. For large h, the dressing phase
then reduces to the AFS phase [64]

σ(xl, yl) ≈
1 − 1

x−

l
y+

l

1 − 1
x+

l
y−

l









(

1 − 1
x+

l
y−

l

)(

1 − 1
x−

l
y+

l

)

(

1 − 1
x+

l
y+

l

)(

1 − 1
x−

l
y−

l

)









ih
wl

(

xl+
1

xl
−yl−

1

yl

)

(2.11)

With these modifications, the classical Bethe equations can be derived for general α
in the exact same way as for α = 1/2. The resulting equations read

±4πα
Ex

x2 − 1
+ 2πn±

1,i = 4α −
∫

dy
ρ±

1

x− y
− 2α

∫

dy
ρ±

2

x− y

− 4α
∫

dy

y2

ρ∓
1

x− 1
y

+ 2α
∫

dy

y2

ρ∓
2

x− 1
y

,

(2.12a)

2πn±
2,i = −2α

∫

dy
ρ±

1

x− y
− 2(1 − α)

∫

dy
ρ±

3

x− y

+ 2α
∫

dy

y2

ρ∓
1

x− 1
y

+ 2(1 − α)
∫

dy

y2

ρ∓
3

x− 1
y

,

(2.12b)

±4π(1 − α)
Ex

x2 − 1
+ 2πn±

3,i = 4(1 − α) −
∫

dy
ρ±

3

x− y
− 2(1 − α)

∫

dy
ρ±

1

x− y

− 4(1 − α)
∫

dy

y2

ρ∓
3

x− 1
y

+ 4(1 − α)
∫

dy

y2

ρ∓
1

x− 1
y

.

(2.12c)

Setting α = sin2 φ, these equations exactly agree with the classical Bethe equations of [1].

2.2 Weak-coupling limit

Let us now turn to the weakly-coupled limit of the all-loop BA proposed above. In this
limit, h → 0, the variables xi will behave as

xi ≈ ui

h
, (2.13)
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where ui ∼ O(1) as h → 0. Hence

x±
i ≈ ui ± iwi/2

h
. (2.14)

Moreover, we will assume that σ(x, y) → 1 as h → 0. This means that in the weak
coupling limit, the Bethe equations in (2.1) decouple into two sets of equations involving
only variables with either un-bared or bared indices. Inserting the above weak coupling
expressions for xi and x±

i into the first three equations in (2.1) we get

(

u1,i + iα

u1,i − iα

)L

=
K1
∏

k=1
k 6=i

u1,i − u1,k + 2iα

u1,i − u1,k − 2iα

K2
∏

k=1

u1,i − u2,k − iα

u1,i − u2,k + iα
, (2.15a)

1 =
K1
∏

k=1

u2,i − u1,k − iα

u2,i − u1,k + iα

K3
∏

k=1

u2,i − u3,k − i(1 − α)

u2,i − u3,k + i(1 − α)
, (2.15b)

(

u3,i + i(1 − α)

u3,i − i(1 − α)

)L

=
K3
∏

k=1
k 6=i

u3,i − u3,k + 2i(1 − α)

u3,i − u3,k − 2i(1 − α)

K2
∏

k=1

u3,i − u2,k − i(1 − α)

u3,i − u2,k + i(1 − α)
. (2.15c)

We now extract the weights of the d(2, 1;α) representation to which the above BA applies.
Recall, that for a general (super)-Lie algebra with simple roots ~αq we can write a set of
Bethe equations in the representation give by weights ~w as [61, 65]

(

ul,i + i
2
~αl · ~w

ul,i − i
2
~αl · ~w

)L

=
Kl
∏

k=1
k 6=i

ul,i − ul,k + i
2
~αl · ~αl

ul,i − ul,k − i
2
~αl · ~αl

∏

l′ 6=l

Kl′
∏

k=1

ul,i − ul′,k + i
2
~αl · ~αl′

ul,i − ul,k − i
2
~αl · ~αl′

(2.16)

As we will argue shortly the spin-chain we are interested in will be alternating. In the next
section we will compare equations (2.15) and (2.16) to find that the spin-chain should

have sites which alternate between the representations
(

−α
2
; 1

2
; 0
)

and
(

−1−α
2

; 0; 1
2

)

.

3 An integrable d(2, 1; α)2 spin-chain

In the previous section we have made a proposal for an all-loop Bethe Ansatz for the en-
ergies of massive string states in the AdS3 ×S3 ×S3 ×S1 background. In equation (2.15)
above, we extracted the weak-coupling limit of this BA. In this section, we will construct
an alternating spin-chain with integrable Hamiltonian whose energies are described pre-
cisely by (2.15). This spin-chain Hamiltonian should provide vital clues in identifying
the elusive CFT2 dual of string theory on this background.

To see what kind of spin-chain we should consider note the following observations.
In section 6 below, we show that the weak-coupling BA equations 2.15 have non-trivial
solutions for twist-one operators. More specifically, we identify an sl(2) subsector of the
BA (2.15) and show it has non-trivial solutions of length L = 1. This indicates that
the spin-chain is not of the conventional homogenous type, where, by definition, no such

8



solutions exist.11 Further, in section 4.1 we show that at α = 1/2 the weak-coupling BA
equations match precisely the osp(4|2) subsector of the weak-coupling spin-chain [57]
of the ABJM theory. Both these observations lead us to conclude that the spin-chain
related to the BA (2.15) should be alternating.

3.1 The alternating d(2, 1; α) spin-chain

Before constructing the Hamiltonian, we will collect here some facts about d(2, 1;α)
representations. In this discussion we follow closely [66]; a very nice review of Lie su-
peralgebras can be found in [67]. If we pick a suitable real form, the algebra d(2, 1;α)
has a bosonic subalgebra sl(2,R) ⊕ su(2) ⊕ su(2). The corresponding generators are
denoted as Sµ (µ = 0, 1, 2), Lm (n = 3, 4, 5) and Rṁ (ṁ = 6, 7, 8). The vector indices
of the bosonic generators are raised and lowered using ηµν = diag(− + +), δmn and δṁṅ,
respectively. There are eight fermionic generators transforming as a tri-spinor under the
bosonic subgroup and denoted by Qaαα̇, where each index takes values + or −. The
(anti)-commutation relations of d(2, 1;α) are12

[Sµ, Sν ] = i ǫµνρ S
ρ , [Sµ, Qaαα̇] = 1

2
Qbαα̇γ

b
µ a ,

[Lm, Ln] = i ǫmnp L
p , [Lm, Qaαα̇] = 1

2
Qaβα̇γ

β
m α ,

[Rṁ, Rṅ] = i ǫṁṅṗR
ṗ , [Rṁ, Qaαα̇] = 1

2
Qaαβ̇γ

β̇
ṁ α̇ ,

{Qaαα̇, Qbββ̇} = −
(

Sµ γ
µ
ab ǫαβ ǫα̇β̇ + αLm ǫab γ

m
αβ ǫα̇β̇ + (1 − α)Rṁ ǫab ǫαβ γ

ṁ
α̇β̇

)

.

(3.1)

The simple roots for d(2, 1;α) are given by

~α1 =
(√

2α; 0; −
√

2α
)

,

~α2 =

(

−
√
α +

√
1 − α√

2
; 1;

√
α− √

1 − α√
2

)

,

~α3 =
(

√

2(1 − α); 0;
√

2(1 − α)
)

,

(3.2)

where the signature is (+ − +). The Cartan matrix Aij = ~αi · ~αj is

A =







4α −2α 0
−2α 0 −2(1 − α)

0 −2(1 − α) 4(1 − α)





 . (3.3)

11The fact that the d(2, 1;α) spin-chain is alternating can also be anticipated from the fact that it
contains two momentum-carrying roots. We would like to thanks Kostya Zarembo for a discussion of
this point.

12The anti-symmetric symbols ǫµνρ, ǫmnp and ǫṁṅṗ are normalized so that ǫ012 = ǫ345 = ǫ678 = 1.
The gamma-matrices are given by

(γµ)
a

b = (−σ3, iσ2,−iσ1) , (γm)
α

β = (σ1, σ2, σ3) ,
(

γṁ
)α̇

β̇ = (σ1, σ2, σ3) .
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There are three special values for α where the algebra simplifies. For α = 1/2 it is
equivalen to d(2, 1) = osp(4|2). When α = 0 or α = 1 it reduces to psu(1, 1|2).

A highest-weight module of d(2, 1;α) consists of a number of heighest-weight modules
of the bosonic sub-algebra sl(2) ×su(2) ×su(2). The fermionic generators of the algebra
map these into each other while preserving algebra relations; this is the conventional
induced representation way of constructing a superalgebra module [68, 69]. Heighest
weight representations of d(2, 1;α) are specified by highest weights of the bosonic subal-
gebra [66, 68]. To denote such a representation we will use the notation

(p ; q ; r)

where p ∈ C is the spin of the non-compact sl(2) and q , r ∈ 1
2
Z are the compact spins.

The corresponding Dynkin labels are

[2q; −2p− 2αq − 2(1 − α)r; 2r] .

A general representation (p; q; r) decomposes under the bosonic subalgebra as

(p; q; r) →
{

(p, q, r), (p− 1
2
, q ± 1

2
, r ± 1

2
), (p− 1

2
, q ± 1

2
, r ∓ 1

2
),

(p− 1, q ± 1, r), (p− 1, q, r ± 1), (p− 1, q, r)⊕2,

(p− 3
2
, q ± 1

2
, r ± 1

2
), (p− 3

2
, q ± 1

2
, r ∓ 1

2
), (p− 2, q, r)

}

.

(3.4)

This decomposition is only valid for a generic module and sometimes has to be modified
in two important ways [66]. Firstly, for a heighest-weight module (p; q; r), if q < 1 or
r < 1 the right-hand-side of equation (3.4) will contain at most terms (p′, q′, r′) for which
q′ , r′ ≥ 0.13 Secondly, as in all superalgebras, there are heighest weight d(2, 1;α) modules
for which the heighest weight state is anihilated not only by the raising operators, but
also by a subset of the fermionic lowering operators; such modules are called atypical,
short or BPS. Atypical modules occur only when p, q and r satisfy so-called shortening
conditions. In the present case these are [66, 68]

0 = p + αq + (1 − α)r , (3.5)

0 = p − α(q + 1) + (1 − α)r , (3.6)

0 = p + αq − (1 − α)(r + 1) , (3.7)

0 = p − α(q + 1) − (1 − α)(r + 1) . (3.8)

Let us now consider the d(2, 1;α) modules that will feature in our spin-chain. The
discussion at the start of the present section strongly suggests that the spin-chain we are
after is alternating. Comparing the weak-coupling BA (2.15) with the general BA for any

13For special values of q and r it may also not contain some (p′, q′, r′) for which q′ , r′ ≥ 0. This may
happen if a particular (p′, q′, r′) for which q′ , r′ ≥ 0 is a descendant of a sub-module (p′′, q′′, r′′) for
which q′′ , r′′ < 0.
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〈

|φ(0)
α 〉

〉

〈

|φ(1)
α 〉

〉

〈

|φ(2)
α 〉

〉

〈

|ψ(0)
α̇ 〉

〉

〈

|ψ(1)
α̇ 〉

〉

ǫα̇β̇Q
+αβ̇

ǫαβQ−βα̇

ǫβαQ+βα̇

ǫα̇β̇Q
−αβ̇

ǫα̇β̇Q
+αβ̇

ǫαβQ−βα̇

ǫβαQ+βα̇

ǫα̇β̇Q
−αβ̇

S+S−

S+S−

S+S−

Lm

Lm

Lm

Rṁ

Rṁ

...

...

...

Figure 1: An illustration of the short
(

−α
2 ; 1

2 , 0
)

d(2, 1;α) module. For clarity, in the figure

we have neglected to include the exact coefficients of the linear maps for the representation.
These can be read-off from equations (A.4)-(A.6) in Appendix A. To emphasise this we use

the notation
〈

. . .
〉

to denote the span of . . . . The states in the left-hand side column have

(L5, R8) = (±1
2 , 0) and those in the right-hand side column have (L5, R8) = (0,±1

2 ). Starting
at the top, the rows in the diagram have S0 eigenvalues equal to −α

2 , −α+1
2 ; −α+2

2 , . . .

weights given in (2.16), we may then read-off the weights of the d(2, 1;α) representations
at the even and odd sites to be

(

−α
2
; 1

2
; 0
)

and
(

−1−α
2

; 0; 1
2

)

. (3.9)

These representations satisfy shortening conditions in equation 3.5 and are particularly
simple since q and r are also very small for them. In terms of representations of the
bosonic part of the algebra they decompose as

(

−α
2
; 1

2
; 0
)

=
{

(−α
2
, 1

2
, 0), (−α+1

2
, 0, 1

2
)
}

, (3.10)
(

−1−α
2

; 0; 1
2

)

=
{

(−1−α
2
, 0, 1

2
) , (−2−α

2
, 0, 1

2
)
}

. (3.11)

A representation for these representations is given in appendix A. The heighest-weight
state of the modules (−α

2
, 1

2
, 0) and (−α+1

2
, 0, 1

2
) of the bosonic sub-algebra will be denoted

by |φ(0)
α=+〉 and |ψ(0)

α̇=+〉, respectively. The subscripts α and α̇ indicate that these states are
part of a doublet representation under Lm, and Rṁ, respectively. When acted on by S−

both these states generate a discrete infinite dimensional representation of sl(2), with
descendants denoted by the super-script (n) for n ∈ N. In figure 1 we denote pictorially
this representation.

The
(

−1−α
2

; 0; 1
2

)

module can be easily obtained from the
(

−α
2
; 1

2
; 0
)

module by ex-

changing the two sets of su(2) generators and replacing α with 1 − α.
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3.2 The integrable d(2, 1; α) hamiltonian

In the previous sub-section we presented the free alternating spin-chain relevant to our
problem. In this section we will construct an integrable Hamiltonian for this spin-chain.
We do this using the R-matrix approach. In section 3.2.1 we first construct the Hamil-
tonian in an sl(2|1) subsector of d(2, 1;α) using the universal R-matrix found in [56]. In
section 3.3, we show that there is a unique lift of this R-matrix to the full d(2, 1;α); this
lift is similar in spirit to those in [70] and [60]. As an example, in section 3.4 we write
down explicitly the Hamiltonian for the su(2)2 subsector of the alternating d(2, 1;α)
spin-chain. Finally, in section 3.5 we construct the spin-chain and Hamiltonian of the
full d(2, 1;α)2 symmetry relevant to the AdS/CFT duality.

3.2.1 The sl(2|1) subsector

We begin this sub-section by reviewing some facts about the sl(2|1) algebra, its em-
bedding into d(2, 1;α) and its representations. Recall that sl(2|1) is a maximal regular
sub-algebra of d(2, 1;α) [67]; an explicit embedding is given by

J0 = −S0 , J± = ∓S1 + i S2 , B = −αL5 + (1 − α)R8 ,

Q+ = Q−−+ , Q− = Q−+− , S+ = Q+−+ , S− = Q++− .
(3.12)

It is easy to check that these generators satisfy the sl(2|1) algebra

[J0, J±] = ±J± , [J+, J−] = 2J0 ,

[B,Q±] = ±1
2
Q± , [J0, Q

±] = +1
2
Q± , [J−, Q

±] = S± ,

[B, S±] = ±1
2
S± , [J0, S

±] = −1
2
S± , [J+, S

±] = Q± ,

{Q+, Q−} = +J+ , {Q+, S−} = −J0 +B ,

{S+, S−} = −J− , {S+, Q−} = −J0 −B .

(3.13)

The irreducible representations of sl(2|1) are labeled by the highest weights (j, b) under
J0 and B. Atypical representations have b = ∓j, and are called chiral and anti-chiral.
The chiral representation (α

2
,−α

2
) and the anti-chiral representation (1−α

2
, 1−α

2
) will be

useful in the construction of the integrable Hamiltonian below. The chiral representation
(α

2
,−α

2
) can be obtained from the d(2, 1;α) representation

(

−α
2
; 1

2
; 0
)

constructed in

Appendix A. In particular, the highest-weight state, |φ(0)
α=+〉, of the

(

−α
2
; 1

2
; 0
)

module is

taken as the highest-weight state of the (α
2
,−α

2
) module. The only fermionic generator

that does not annihilate this state is Q− which acts as

Q− |φ(0)
α=+〉 = −√

α |ψ(0)
α̇=+〉 . (3.14)

Acting with the bosonic lowering operator J+ we obtain the (countably infinite) descen-

dents |φ(n)
α=+〉 and |ψ(n)

α̇=+〉, where n ≥ 0, which form the basis for the (α
2
,−α

2
) module. In

summary then, starting from the d(2, 1;α) module
(

−α
2
; 1

2
; 0
)

whose basis are the states

|φ(n)
α 〉 and |ψ(n)

α̇ 〉 we can obtain the sl(2|1) module (α
2
,−α

2
) by restricting to α=+ and

α̇=+ states. In figure 2 we provide a pictorial representation of this module. Anti-chiral

12



〈

|φ(0)
+ 〉

〉

〈

|φ(1)
+ 〉

〉

〈

|φ(2)
+ 〉

〉

〈

|ψ(0)
+ 〉

〉

〈

|ψ(1)
+ 〉

〉

S−

Q+

S+

Q−

S−

Q+

S+

Q−

J−J+

J−J+

J−J+

...

...

...

Figure 2: An illustration of the short
(α

2 ,−α
2

)

sl(2|1) module. For clarity, in the figure we
have neglected to include the exact coefficients of the linear maps for the representation. These
can be read-off from equations (A.4)-(A.6) in Appendix A using the embedding (3.12). To

emphasise this we use the notation
〈

. . .
〉

to denote the span of . . . . The states in the left-hand

side column have B = −α
2 and those in the right-hand side column have B = 1−α

2 . Starting at
the top, the rows in the diagram have J0 eigenvalues equal to α

2 ,
α+1

2 , α+2
2 , . . .

modules (1−α
2
, 1−α

2
) can be obtained in an analogous fashion from the d(2, 1;α) modules

(

−1−α
2

; 0; 1
2

)

.
In constructing R-matrices it is often useful to know the tensor product decomposi-

tions of the constituent representations. The tensor products of two atypical represen-
tations are given by

(j1,±j1) ⊗(j2,±j2) = (j,±j) ⊕
∞
⊕

n=0

(

j + 1
2

+ n,±(j − 1
2
)
)

, (3.15)

(j1,±j1) ⊗(j2,∓j2) =
∞
⊕

n=0

(j + n,±̄) , (3.16)

where j = j1 + j2 and ̄ = j1 − j2. For the representations we are interested in this
implies,

(

α
2
,−α

2

)

⊗
(

α
2
,−α

2

)

= (α,−α) ⊕
∞
⊕

n=1

(

α − 1
2

+ n, 1
2

− α
)

, (3.17)

(

1−α
2
, 1−α

2

)

⊗
(

1−α
2
, 1−α

2

)

= (1 − α, 1 − α) ⊕
∞
⊕

n=1

(

1
2

− α + n, 1
2

− α
)

, (3.18)

(

α
2
,−α

2

)

⊗
(

1−α
2
, 1−α

2

)

=
∞
⊕

n=0

(

1
2

+ n, 1
2

− α
)

. (3.19)
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The R-matrix Rab(u) acts on the tensor product Va ⊗ Vb and can be decomposed as

Rab(u) =
∑

c

Rc
ab(u)Pc , (3.20)

where the sum is over all irreducible representations in the decomposition of the product,
and Pc is a projector. To simplify the notation we will use the labels a, b = ± for the
matrix acting on chiral respectively anti-chiral representations, and write the projectors
as

P
(
1
2

−α+n,
1
2

−α)
≡ Pn+ , P

(α−
1
2

+n,
1
2

−α)
≡ Pn− , P

(
1
2

+n,
1
2

−α)
≡ Pn , (3.21)

with corresponding notation for the label c of the R-matrix.
In [56] the R-matrix acting on an arbitrary representation of sl(2|1) was derived. For

two chiral or anti-chiral states we get (n ≥ 1)

Rn−

−−(u) = (−1)nN−−(ũ)
Γ(+ũ+ α+ n)

Γ(−ũ+ α + n)
, (3.22)

Rn+

++(u) = (−1)nN++(ũ)
Γ(+ũ+ 1 − α + n)

Γ(−ũ+ 1 − α + n)
, (3.23)

while a chiral with an anti-chiral state gives (n ≥ 0)

Rn
+−(u) = Rn

−+(u) = (−1)nN−+(ũ)
Γ(+ũ+ 1 + n)

Γ(−ũ+ 1 + n)
. (3.24)

Here ũ = u/c and c and N±±(ũ) are arbitrary and correspond to trivial symmetries of
the Yang-Baxter equation. We find it convenient to choose

N−−(ũ) =
Γ(−ũ+ α)

Γ(+ũ+ α)
, N++(ũ) =

Γ(−ũ+ 1 − α)

Γ(+ũ+ 1 − α)
, N∓±(ũ) =

Γ(−ũ+ 1)

Γ(+ũ+ 1)
, (3.25)

and set c = 2. Then the above expressions can be written as

Rn−

−−(u) =
n−1
∏

k=0

u+ 2α+ 2k

u− 2α− 2k
, (3.26)

Rn+

++(u) =
n−1
∏

k=0

u+ 2(1 − α) + 2k

u− 2(1 − α) − 2k
, (3.27)

Rn
∓±(u) =

n
∏

k=0

u+ 2k

u− 2k
. (3.28)

With the above normalization we also have

R
(α,−α)
−− = 1 , R

(1−α,1−α)
++ = 1 . (3.29)

We will now use these R-matrices to derive a Hamiltonian for the alternating spin-
chain. Our notation closely follows the notation of [71]. The spin-chain has chiral
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representations sitting at odd sites and anti-chiral representations at even sites, which
we will label by ai and āi, respectively. For a chain with L sites (of each kind) we can write
down two transfer matrices, with the auxiliary space in either the chiral representation
(with an a index), or the anti-chiral representation (indicate by an ā index),

Ta(u) = Raa1
(u)Raā1

(u)Raa2
(u)Raā2

(u) · · ·RaaL
(u)RaāL

(u) , (3.30)

Tā(u) = Rāa1
(u)Rāā1

(u)Rāa2
(u)Rāā2

(u) · · ·RāaL
(u)RāāL

(u) . (3.31)

Taking the traces over the auxiliary spaces we define

τ(u) = tra Ta(u) , τ̄ (u) = trā Tā(u) . (3.32)

The Yang-Baxter equation now ensures the commutation relations

[τ(u), τ(v)] = [τ(u), τ̄(v)] = [τ̄ (u), τ̄(v)] = 0. (3.33)

The Hamiltonian is given by

H = C(τ(0)τ̄ (0))−1 d

du
(τ(u)τ̄(u))

∣

∣

∣

∣

∣

u=0

, (3.34)

where C is a normalization constant. Since τ(u) and τ̄ (v) commute, we can write this as

H = C(τ(0)τ̄(0))−1 [τ ′(0)τ̄(0) + τ(0)τ̄ ′(0)] (3.35)

= C(τ(0)τ̄(0))−1 [τ ′(0)τ̄(0) + τ̄ ′(0)τ(0)] . (3.36)

We note that

Rab(0) = P(α,−α) +
∞
∑

n=1

(−1)nPn− , (3.37)

Rāb̄(0) = P(1−α,1−α) +
∞
∑

n=1

(−1)nPn+ . (3.38)

The representations appearing in the sums are symmetric for even n and anti-symmetric
for odd n. Hence the above operators act as two-site exchange operators

Rab(0) = Pab , Rāb̄(0) = Pāb̄ . (3.39)

The R-matrix acting on a chiral and an anti-chiral representation is, at u = 0,

Rab̄(0) =
∞
∑

n=0

(−1)nPn . (3.40)

Introducing explicit indices Ia and Īa for the states of the chiral and anti-chiral repre-
sentations, we can write the above operators as

Rab(0) = δJb

Ia
δJa

Ib
, Rāb̄(0) = δJ̄b

Īa
δJ̄a

Īb
, Rab̄(0) = MJaJ̄b

IaĪb
, (3.41)
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where the last equality defines M. We also note that

MKaK̄b

IaĪb
MJaJ̄b

KaK̄b
= δJa

Ia
δJ̄b

Īb
. (3.42)

It then follows that

(τ(0)τ̄ (0))J1J̄1J2J̄2···JLJ̄L

I1Ī1I2Ī2···ILĪL
= δJ2

I1
δJ̄2

Ī1
δJ3

I2
δJ̄3

Ī2
· · · δJ1

IL
δJ̄1

ĪL
, (3.43)

which acts as a two site shift operator.
We also need the derivatives of the R-matrix at u = 0,

A ≡ R′
ab(0) =

∞
∑

n=1

(−1)n [ψ(α + n) − ψ(α)] Pn− , (3.44)

Ā ≡ R′
āb̄(0) =

∞
∑

n=1

(−1)n [ψ(1 − α + n) − ψ(1 − α)] Pn+ , (3.45)

B ≡ R′
ab̄(0) =

∞
∑

j=1

(−1)n [ψ(n+ 1) + γE] Pn , (3.46)

where ψ(z) is the digamma function and γE is the Euler-Mascheroni constant.14 Putting
everything together, the Hamiltonian can now be written as

H = C
L
∑

l=1

(

MKK̄
IlĪl

AJl+1L
KIl+1

MJlJ̄l

LK̄
+ BKK̄

IlĪl
MJlJ̄l

KK̄

)

+ C
L
∑

l=1

(

MK̄K
ĪlIl+1

ĀJ̄l+1L̄

K̄Īl+1
MJ̄lJl+1

L̄K
+ BK̄K

ĪlIl+1
MJ̄lJl+1

K̄K

)

.

(3.47)

We observe in particular that for α = 1/2,

A = Ā =
∞
∑

n=1

(−1)n (2h(2n − 1) − h(n− 1)) P(n,0) , (3.48)

B =
∞
∑

n=1

(−1)nh(n)P
(n+

1
2

,0)
. (3.49)

For this value of α the Hamiltonian exactly coincides with the Hamiltonian for the sl(2|1)
sector of ABJM [71].

3.3 The lift to d(2, 1; α)

The lift of the sl(2|1) R-matrix in (3.26)–(3.29) to the full d(2, 1;α) is now straightfor-
ward. Comparing the tensor product decompositions (3.17)–(3.19) with the correspond-
ing products in the larger group, (A.1)–(A.3), it is easy to see that there is a direct map
between the individual states. The d(2, 1;α) R-matrix is then given by replacing the
projectors in the R-matrix of the previous sector by the projector of the full group. It
would be interesting to verify the validity of this uplifting procedure by a direct check
of the YBE equation for the d(2, 1;α) R-matrix.15

14We can also express these coefficients in terms of analytically continued harmonic numbers using
the relation h(z) = ψ(z + 1) + γE.

15We would like to thanks Kostya Zarembo for a discussion of this point.
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3.4 The su(2) × su(2) sector

The largest compact subalgebra of d(2, 1;α) is su(2) × su(2). In this sector, the tensor
product between odd and even sites is truncated to

(−α
2
; 1

2
; 0) ⊗(−1−α

2
; 0; 1

2
) → (−1

2
; 1

2
; 1

2
) , (3.50)

(−α
2
; 1

2
; 0) ⊗(−α

2
; 1

2
; 0) → (−α; 1; 0) ⊕(−α; 0; 0) , (3.51)

(−1−α
2

; 0; 1
2
) ⊗(−1−α

2
; 0; 1

2
) → (−(1 − α); 0; 1) ⊕(−(1 − α); 0; 0) . (3.52)

The corresponding products in sl(2|1) read

(

α
2
,−α

2

)

⊗
(

α
2
,−α

2

)

→ (α,−α) ⊕
(

α+ 1
2
, 1

2
− α

)

, (3.53)
(

1−α
2
, 1−α

2

)

⊗
(

1−α
2
, 1−α

2

)

→ (1 − α, 1 − α) ⊕
(

3
2

− α, 1
2

− α
)

, (3.54)
(

α
2
,−α

2

)

⊗
(

1−α
2
, 1−α

2

)

→
(

1
2
, 1

2
− α

)

. (3.55)

As we previously noted, the representations
(

α + 1
2
, 1

2
− α

)

and
(

3
2

− α, 1
2

− α
)

are anti-
symmetric. Hence

P
(
1
2

+α,
1
2

−α)
= 1

2
(1 − PIlIl+1

) , P
(
3
2

−α,
1
2

−α)
= 1

2
(1 − PĪlĪl+1

) , (3.56)

This gives the Hamiltonian

H =
C

2

∑

l

[

1

α
(1 − PIlIl+1

) +
1

1 − α
(1 − PĪlĪl+1

)
]

. (3.57)

As expected this is the sum of two Heisenberg spin-chain Hamiltonians.

3.5 The full d(2, 1; α)2 spin-chain

The symmetry of the weak coupling Bethe equations constructed above is D(2, 1;α).
However, the symmetry group of superstrings on AdS3 × S3 × S3 is D(2, 1;α)2. The
two factors of the full group act independently on the left- respectively right-moving
sectors of the theory. As seen in the full Bethe equations in section 2, the two sets of
equations are coupled via the dressing phase and via fermionic inversion symmetry links.
To leading order at weak coupling these interactions are trivial, and we can treat the left-
and right-movers separately.16 Hence, the situation is similar to the su(2) × su(2) sector
of ABJM, which also consists of two independent subsectors which at weak coupling only
couple through the momentum constraint [57].

Hence, the weak coupling Bethe equations in this section only describe the left-
moving sector of the theory. To describe the full spectrum, we need an additional set
of equations describing the right-movers. As argued above, at weak coupling the left-
and right-mover equations are independent. However, there is still a coupling between

16We assume that the dressing phase is trivial at weak coupling, as is the case in AdS5 × S5 and
AdS4 × CP 3.
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them from the momentum constraint which requires that the total momentum for any
physical operator vanishes,17

eiPtot = ei(PL−PR) =

∏K1

k=1
u1,k+iα

u1,k−iα
∏K̄1

k=1
u1̄,k+iα

u1̄,k−iα

∏K3

k=1
u3,k+i(1−α)

u3,k−i(1−α)

∏K̄3

k=1
u3̄,k+i(1−α)

u3̄,k−i(1−α)

= 1 , (3.58)

where the momentum of excitations in the left- and right-moving sectors are counted
with different signs.

Since we have two sets of Bethe equations coupled only via the momentum constraint,
there are many more physical operators than there would have been if we required each
sector to have vanishing momentum by itself. In fact, any solution to the Bethe equations
for the left-movers can be turned into a physical solution with vanishing momentum, pro-
vided we can find a solution to the equations for the right-movers with equal momentum.
This is easily accomplished by just setting ul̄,i = ul,i.

The string theory background also contains an S1 factor, which couples to the rest
of the geometry only via the Virasoro constraints. At weak coupling this means that
also solutions to the Bethe equations which do not have zero total momentum should be
considered, since any additional momentum can be attributed to one or more massless
excitation on this circle.

Even though a physical operator only needs to have zero total momentum, it is
interesting to consider solutions to the left-moving Bethe equations that satisfy the mo-
mentum constraint by themselves. As we will see below, such solutions for example dis-
play extra degeneracies not directly explained by the manifest symmetries of the model.
In addition the similarities of the Bethe equations proposed here and those describing
N = 4 SYM and the ABJM model are made more apparent when we concentrate on
such a chiral sector.

4 Fermionic duality

The Dynkin diagram of a superalgebra is not unique, since there are multiple inequivalent
choices of the simple roots. For example, in figure 3 we show two examples of Dynkin
diagrams for d(2, 1;α). The structure of the Bethe equations is intimately related to a
chosen Dynkin diagram and one can transform the Bethe equations between different
such choices using a fermionic duality. The Bethe equations we have been dealing with
so far are related to the Dynkin diagram in figure 3a. In this section we will perform a
fermionic duality on our Bethe equations in order to obtain a form of them related to
the Dynkin diagram in figure 3b. The new form of Bethe equations will allow us, in the
next section, to take the α → 1 limit more easily.

The procedure for fermionic duality on Bethe equations used in this section closely
follows the general prescription discussed in [72–75]. The case at hand is very similar to

17On the string theory side of the AdS3/CFT2 duality the momentum constraint arises from the level
matching condition fo closed strings. Since the CFT2 is unknown it is not clear what this corresponds
to at weak coupling.
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the osp(6|4) spin-chain studied in [49, 57]. The original Bethe equations read
(

u1,i + iα

u1,i − iα

)L

=
K1
∏

k=1
k 6=i

u1,i − u1,k + 2iα

u1,i − u1,k − 2iα

K2
∏

k=1

u1,i − u2,k − iα

u1,i − u2,k + iα
,

1 =
K1
∏

k=1

u2,i − u1,k − iα

u2,i − u1,k + iα

K3
∏

k=1

u2,i − u3,k − i(1 − α)

u2,i − u3,k + i(1 − α)
,

(

u3,i + i(1 − α)

u3,i − i(1 − α)

)L

=
K3
∏

k=1
k 6=i

u3,i − u3,k + 2i(1 − α)

u3,i − u3,k − 2i(1 − α)

K2
∏

k=1

u3,i − u2,k − i(1 − α)

u3,i − u2,k + i(1 − α)
.

(4.1)

The middle equation can be expressed as

P (u2,i) = 0 , (4.2)

where P (u) is the polynomial

P (u) =
K1
∏

k=1

(u− u1,k + iα)
K3
∏

k=1

(u− u3,k + i(1 − α))

−
K1
∏

k=1

(u− u1,k − iα)
K3
∏

k=1

(u− u3,k − i(1 − α)) .

(4.3)

P (u) has in total K1 +K3 − 1 zeros. Of these, K2 are the original roots u2,k. Hence we
can write P (u) as

P (u) = 2i(αK1 + (1 − α)K3)
K2
∏

k=1

(u− u2,k)
K̃2
∏

k=1

(u− ũ2,k) , (4.4)

where we have introduced K̃2 = K1 + K3 − K2 − 1 dual roots ũ2,k. An important
observation is that these dual roots satisfy the same Bethe equation as the original
roots. By evaluating P (u) in u1,i ± iα and u3,i ± i(1−α) we can now transform our Bethe
equations to the dual form

(

u1,i + iα

u1,i − iα

)L

=
K3
∏

k=1

u1,i − u3,k − i

u1,i − u3,k + i

K̃2
∏

k=1

u1,i − ũ2,k + iα

u1,i − ũ2,k − iα
,

1 =
K1
∏

k=1

ũ2,i − u1,k + iα

ũ2,i − u1,k − iα

K3
∏

k=1

ũ2,i − u3,k + i(1 − α)

ũ2,i − u3,k − i(1 − α)
,

(

u3,i + i(1 − α)

u3,i − i(1 − α)

)L

=
K1
∏

k=1

u3,i − u1,k − i

u3,i − u1,k + i

K̃2
∏

k=1

u3,i − ũ2,k + i(1 − α)

u3,i − ũ2,k − i(1 − α)
.

(4.5)

Compared to the equations we started with we note a few changes:

• There are no self-interactions in any equation. This means that this corresponds
to a Dynkin diagram where all nodes are fermionic.

• The interaction of the u2,k roots with u1,k and u3,k has switched sign.

• There is a new interaction between the u1,k and u3,k roots.

19



1

1

(a)

1

1

(b)

Figure 3: Two of the Dynkin diagrams for d(2, 1;α). The crossed notes are fermionic and the
labels indicate the momentum carrying roots in the Bethe equations. The original equations
(4.1) corresponds to the diagram (a), while the dualized equations (4.5) corresponds to (b).

4.1 Dualization of the full Bethe equations?

The dualization of the full Bethe equations is more tricky, due to the links between, e.g.,
the x1,k and x2̄,k nodes. Here we will work in the sector where one of the d(2, 1;α) factors
carry no excitations, i.e., K1̄ = K2̄ = K3̄ = 0. The procedure is then very similar to the
one-loop case and we get the dual equations

(

x+
1,i

x−
1,i

)L

=
K1
∏

k=1
k 6=i

1 − 1
x+

1,i
x−

1,k

1 − 1
x−

1,i
x+

1,k

σ2
1(x1,i, x1,k)

K̃2
∏

k=1

x+
1,i − x̃2,k

x−
1,i − x̃2,k

K3
∏

k=1

x−
1,i − x+

3,k

x+
1,i − x−

3,k

,

1 =
K1
∏

k=1

x̃2,i − x+
1,k

x̃2,i − x−
1,k

K3
∏

k=1

x̃2,i − x+
3,k

x̃2,i − x−
3,k

,

(

x+
3,i

x−
3,i

)L

=
K3
∏

k=1
k 6=i

1 − 1
x+

3,i
x−

3,k

1 − 1
x−

3,i
x+

3,k

σ2
3(x3,i, x3,k)

K̃2
∏

k=1

x+
3,i − x̃2,k

x−
3,i − x̃2,k

K1
∏

k=1

x−
3,i − x+

1,k

x+
3,i − x−

1,k

.

(4.6)

Note that these equations are valid for any value of α.
Let us now consider the α = 1/2 case, and put K1 = K3 = K, K̃2 = 0 and x±

1,k =
x±

3,k = x±
k . The above equations then reduce to

(

x+
i

x−
i

)L

= −
K
∏

k=1
k 6=i

x−
i − x+

k

x+
i − x−

k

1 − 1
x+

i
x−

k

1 − 1
x−

i
x+

k

σ2(xi, xk) . (4.7)

An equation of exactly this form appears in ABJM [49], and, apart from the minus sign on
the right hand side, it is the starting point for deriving the Eden-Staudacher [76], Beisert-
Eden-Staudacher [62] and Freyhult-Rej-Staudacher [77] equations. However, these equa-
tions heavily rely on the exact form of the BES/BHL dressing phase [62, 63], and there
is no particular reason that the dressing phase in (4.7) should take the same form as the
corresponding phases in N = 4 SYM and ABJM.18 Hence, the solutions of (4.7) can in
general be very different from the previously known cases.

18In order to reproduce the classical Bethe equations in (2.12) the leading strong coupling behavior
of σ should take the AFS form [64].
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5 The α → 1 limit and AdS3 × S3 × T 4

In the α → 1 limit, the d(2, 1;α) algebra turns into psu(1, 1|2).19 This allowed for a
unified treatment of the Green-Schwarz superstring action on both the AdS3×S3×S3×S1

and AdS3×S3×T 4 backgrounds [1]. In this section we will investigate the α → 1 limit for
the weakly coupled Bethe Ansatz and corresponding spin-chain described in sections 2.2
and 3 above. Firstly, in sub-section 5.1, we will show that taking the weak-coupling
limit of the all-loop Bethe equations for AdS3 × S3 × T 4 [1] gives the same equations
as one obtains by taking the α → 1 limit of the weak-coupling α 6= 1 Bethe equations
discussed in section 4. Then, in sub-section 5.2 we construct a homogenous spin-chain
which leads to the α = 1 weak-coupling Bethe equations of the previous sub-section. In
sub-section 5.3 we discuss how this homogenous spin-chain arrises from the α → 1 limit
of the alternating chain constructed in section 3. We show that the integrable structure
underlying the alternating spin-chain constructed in section 3 remains finite in the α → 1
limit, and argue that the “missing massless states” puzzle mentioned in the introduction
can be resolved by a careful analysis of this limit.

5.1 The weakly-coupled α = 1 Bethe equations

To find the Bethe equations for α = 1, we start with the dualized form of the equations in
(4.5). To get the conventional notation for the Dynkin labels of psu(1, 1|2) we exchange
the labels 1 and 2. Setting α = 1 and rescaling the Bethe roots by a factor 2, the
equations read

1 =
K2
∏

k=1

ũ1,i − u2,k + i
2

ũ1,i − u2,k − i
2

, (5.1a)

(

u2,i + i
2

u2,i − i
2

)L

=
K̃1
∏

k=1

u2,i − ũ1,k + i
2

u2,i − ũ1,k − i
2

K3
∏

k=1

u2,i − u3,k − i
2

u2,i − u2,k + i
2

, (5.1b)

1 =
K2
∏

k=1

u3,i − u2,k − i
2

u3,i − u2,k + i
2

. (5.1c)

This is the standard Bethe equations for a nearest-neighbor spin-chain in the psu(1, 1|2)
representation with Dynkin labels [0; 1; 0], and the Dynkin diagram in figure 4b. By
performing a fermionic duality transformation on either of the outer nodes of the diagram
we can make either the compact su(2) sector or the non-compact sl(2) sector manifest.

19The α → 0 limit also results in such a reduction; the only difference is which su(2) sub-algebra
one looses. Since the d(2, 1;α) is isomorphic to the d(2, 1; 1 − α) algebra the two limits are related and
correspond to chosing which of the two S3 decompactifies.
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1

(a)

1

(b)

−1

(c)

Figure 4: Three Dynkin diagrams for psu(1, 1|2).

In the first case, corresponding to the diagram figure 4a the Bethe equations read

1 =
K2
∏

k=1

u1,i − u2,k − i
2

u1,i − u2,k + i
2

, (5.2a)

(

u2,i + i
2

u2,i − i
2

)L

=
K2
∏

k=1
k 6=i

u2,i − u2,k + i

u2,i − u2,k − i

K1
∏

k=1

u2,i − u1,k − i
2

u2,i − u1,k + i
2

K3
∏

k=1

u2,i − u3,k − i
2

u2,i − u3,k + i
2

, (5.2b)

1 =
K2
∏

k=1

u3,i − u2,k − i
2

u3,i − u2,k + i
2

, (5.2c)

while the equations corresponding to figure 4c are

1 =
K2
∏

k=1

ũ1i − u2,k + i
2

ũ1i − u2,k − i
2

, (5.3a)

(

u2,i + i
2

u2,i − i
2

)L

=
K2
∏

k=1
k 6=i

u2,i − u2,k − i

u2,i − u2,k + i

K̃1
∏

k=1

u2,i − ũ1k + i
2

u2,i − ũ1k − i
2

K̃3
∏

k=1

u2,i − ũ3k + i
2

u2,i − ũ3k − i
2

, (5.3b)

1 =
K2
∏

k=1

ũ3i − u2,k + i
2

ũ3i − u2,k − i
2

. (5.3c)

In [1] a set of all-loop Bethe equations for AdS3 × S3 × T 4 were proposed. From
these we readily obtain the equations presented above by taking a weak coupling limit
of the left-moving sector of the full equations in a very similar way to the procedure
discussed in section 2.2. As discussed in section 3.5, the complete model has another
set of identical equations describing the right-moving sector, with the two sectors being
coupled only through the momentum constraint given in equation (3.58). From this
analysis, we are lead to conclude that taking the α → 1 limit commutes with taking
the weak-coupling limit in the full Bethe ansatz. This was not guaranteed a priori, and
suggests that investigating the α → 1 limit at weak-coupling is a physically meaningful
procedure.

The Bethe equations derived above have appeared in [78], in the context of the
psu(1, 1|2) sector of N = 4 SYM. We are then lead to the natural result that the
integrable spin-chain which gives rise to the Bethe equations (5.3) or (5.2) is of the
homogenous type. A confirmation of this observation can be found by noting that,
unlike the Bethe equations for α 6= 1 (2.15), these Bethe equations do not have any
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L = 1 solutions. In the next sub-section, we will discuss the spin-chain which leads to
the Bethe equations (5.3) and (5.2).

5.2 The integrable psu(1, 1|2) spin-chain

In this sub-section we construct the R-matrix and hamiltonian for a spin-chain which
can be solved by the psu(1, 1|2) BA equations (5.3) and (5.2). As discussed at the end of
the previous sub-section these equations correspond to a non-alternating, homogenous,
spin-chain with psu(1, 1|2) symmetry. From the Bethe ansatz equations of the previous
sub-section we find that the weights of the psu(1, 1|2) representations at each site are
(−1

2
; 1

2
).20 This is a short representation, and we refer the reader to appendix B, where

we present an explicit realisation for it.
To construct the R-matrix for this spin-chain we make two observations. Firstly, note

the decomposition into irreducible representations of the tensor product of two (−1
2
; 1

2
)

psu(1, 1|2) modules

(−1
2
; 1

2
) ⊗(−1

2
; 1

2
) = (−1; 1) ⊕

⊕

j≥0

(−1 − j; 0) . (5.4)

Secondly, in the construction we will also use the embedding of the maximal sub-algebra
sl(2|1) into psu(1, 1|2). The embedding in terms of generators is obtained by setting α =
1 in equation (3.12). Under this embedding the sl(2|1) module (1

2
,−1

2
) is a submodule

of the psu(1, 1|2) module (−1
2
; 1

2
). The decomposition of the tensor product of these

sub-modules can be obtained by setting α = 1 in equation (3.17) to get

(

1
2
,−1

2

)

⊗
(

1
2
,−1

2

)

= (1,−1) ⊕
∞
⊕

n=1

(

1
2

+ n,−1
2

)

. (5.5)

The R-matrix can be constructed using the universal R-matrix [56]. It has the general
form given in equation (3.20). This R-matrix is just the R−−(u) R-matrix of section 3.2.1
evaluated with α = 1: the coefficients in front of the projection operators are given in
equation (3.26) evaluated at α = 1. The transfer matrix is then the conventional one for
a homogenous spin-chain

Ta(u) = Raa1
(u)Raa2

(u) · · ·RaaL
(u) . (5.6)

Taking the traces over the auxiliary space, which is also taken in the (1
2
, −1

2
) represen-

tation of sl(2|1), we define
τ(u) = tra Ta(u) . (5.7)

The Hamiltonian is given by

H = C(τ(0))−1 d

du
τ(u)

∣

∣

∣

∣

∣

u=0

, (5.8)

20We use the notation (p; q) to label a psu(1, 1|2) module, with p and q being the highest weights of
the bosonic sub-algebras su(1, 1) and su(2).
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where C is a normalization constant. Comparing the tensor product decompositions of
the sl(2|1) modules given in equation (5.5) with those of the psu(1, 1|2) modules given
in equation (5.4) we see that there is an isomorphism between the irreducible represen-
tations of the two decompositions. As a result, just as in section 3.3, we can uniquely
lift the sl(2|1) R-matrix and Hamiltonian to a psu(1, 1|2) R-matrix and Hamiltonian.
As expected, the resulting psu(1, 1|2) Hamiltonian is precisely the one studied in [59].

5.3 The psu(1, 1|2) spin-chain from the d(2, 1; α) spin-chain

In this subsection we collect some observations about the α → 1 limit.21 In this limit
the algebra changes from d(2, 1;α) to psu(1, 1|2). One key feature of this limit is that
the number of massless BMN states changes [1]. Recall that for generic α the BMN
states consist of 2 + 2 + 2 = 6 massive bosons and two massless bosons as well as their
fermionic superpartners. The massive bosons have masses squared proportional to 1, α
and 1 − α. As α → 1, two bosons and two fermions become massless. We will argue
below that understanding the α → 1 limit is intimately related to understanding the
way the massless modes should enter the AdS3/CFT2 correspondence.

5.3.1 The α → 1 limit in the BA equations

Consider first taking the α → 1 limit in the BA equations. As we saw in section 5.1 above,
it is possible to write down BA equations for which this limit can be taken smoothly.
From this we can conclude that any solution of the α = 1 BA equations (5.1) can be
uplifted to a solution of the α 6= 1 BA equations (2.15). However, this does not mean
that all solutions of the α 6= 1 BA equations (2.15) map smoothly to solutions of the
α = 1 BA equations (5.1). In section 6.1 below, we illustrate this by considering some
simple solutions which lie in a compact su(2) subsector of the d(2, 1;α) BA (2.15) and
investigate their α → 1 limit. We observe that the energies of some solutions in this
sector diverge, while other solutions’ energies remain finite. The presence of solutions to
the BA (4.5) whose energies diverge in this limit shows that the α = 1 BA (5.1) “loses”
some of the states from the α 6= 1 BA.

This divergent behaviour can be expected on general grounds. To see this we note
that the magnon dispersion relation of the u3,i Bethe roots is given by

ǫ3(p) =

√

1 − α + 4h2 sin2 p

2
, (5.9)

In the weak coupling limit, we expand this as

ǫ3(p) =
√

1 − α +
2h2

√
1 − α

sin2 p

2
+ O(h4) . (5.10)

When α → 1, the u3,i excitations become massless, and this expansion is not valid
anymore. Instead

ǫ3(p) → 2h

∣

∣

∣

∣

sin
p

2

∣

∣

∣

∣

. (5.11)

21Similar comments apply to the equivalent α → 0 limit.
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However, the weak coupling Bethe equations, and the corresponding spin-chain Hamil-
tonian derived in section 3 gives the leading correction to the energy for generic α, and
is therefore proportional to h2. Hence, the divergences appearing in the energies in the
α → 1 limit is an indication of the presence of extra massless modes.

What is more, as we see in some examples in section 6.1 below, the BA solutions
with divergent terms will generically have, in the α → 1 limit, coincident roots. Such
behaviour is not allowed in the conventional BA [79, 80]. We take it as a strong hint
that one should be able to construct, at α = 1, a “generalised” BA which allows for
such coincident roots, and in this way captures the “lost” states described above. We
expect this generalised ansatz to contain useful information about the massless states
which constitute some of the “lost” states mentioned above.

Naively, one might think that the massless modes in the AdS3 × S3 × T 4 theory
would be decoupled from the other degrees of freedom, interacting perhaps at most via
the level-matching condition. While it is true that the bosons on T 4 are free, in the GS
formulation the fermions are 10d spinors. As such, reduced on AdS3 ×S3 × T 4 they will
transform as tri-spinors of the three components of this spacetime. As a result, once
we fix kappa gauge, there will not be any fermions that decouple from the AdS3 × S3

directions. World-sheet superconformal invariance then implies that the bosons of T 4

will also have to have a non-trivial coupling to the AdS3 × S3 directions.

5.3.2 The α → 1 limit in the integrable spin-chain

From the above discussion it should be clear that the missing description of massless
states is related to the subtleties of the α → 1 limit. As we have argued above, in
general the spin-chain Hamiltonian will diverge in this limit. The simplest way to see
this is to consider the su(2) × su(2) subsector discussed in section 3.4 – the Hamiltonian
is clearly divergent. One may expect that this divergence comes from an order of limits
problem between taking the weak-coupling limit and the α → 1 limit. In general, this
would prevent us from extracting useful information about massless modes in the weak
coupling limit. However, the system we are considering is far from generic – it is in fact
integrable. In this sub-section we point out that the underlying integrable structure of
the spin-chain remains finite in the α → 1 limit. This indicates that a more detailed
analysis of the spin-chain in this limit should yield exact information about the missing
massless states of the AdS3/CFT2 correspondence.

Let us begin by relating the alternating α 6= 1 spin-chain constructed in section 3 to
the homogenous α = 1 spin-chain constructed in section 5.2. In the alternating d(2, 1;α)
spin-chain, the odd and even sites transform in the (−α

2
; 1

2
; 0) and (−1−α

2
; 0; 1

2
) represen-

tations, respectively. In appendix B, we study the α → 1 limit of these representations.
The first representation, describing the odd sites of the spin-chain, turns into the (−1

2
; 1

2
)

spin representation of psu(1, 1|2), while the second representation, which sits at even
site, becomes reducible, decomposing into a pair of singlet states and a (−1

2
; 1

2
) module

whose heighest weight state is fermionic in the original grading. The psu(1, 1|2) Bethe
equations and corresponding spin-chain only describe operators in which all even sites
contain the singlet state φ̄+. Indeed one can always replace a homogenous spin-chain
by an alternating spin-chain where the extra sites are just singlets of the underlying
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global symmetry. The energies of the two spin-chains and the BA equations will be
indistinguishable.

Having identified the homogenous spin-chain constructed in section 5.2 as a subsector
of the α → 1 limit of the alternating spin-chain constructed in section 3, we now turn
to the integrable structure’s behaviour in the α → 1 limit. The full d(2, 1;α) spin-chain
actually contains more information about the α → 1 spectrum than the equations (5.1).
To see this, let us consider the α → 1 limit of the sl(2|1) R-matrix:

R̃n−

−−(u) =
n−1
∏

k=0

u+ 2(k + 1)

u− 2(k + 1)
, R̃n+

++(u) =
n−1
∏

k=0

u+ 2k

u− 2k
, R̃n

∓±(u) =
n
∏

k=0

u+ 2k

u− 2k
. (5.12)

We use the same notation for the states appearing in the tensor product as in sec-
tion 3.2.1, though some of the projectors now project onto reducible representations.

The key observation is that while the Hamiltonian of the alternating spin-chain in the
α → 1 limit is divergent, the R-matrix remains finite and non-trivial. This indicates that
in order to construct the complete Hamiltonian for the α → 1 limit of the alternating
spin-chain, one needs to start with the above R-matrix, which is well defined in this
limit, and construct the transfer matrix and Hamiltonian from it. This Hamiltonian
will “know” about the massless states appearing in the α → 1 limit. From the finite
R-matrix above, one should also be able to construct a set of “generalised” BA equations
for the α = 1 theory which also “know” about the massless modes. We are pursuing
these directions presently and hope to report more fully on these developments in the
near future [81].22

6 Solutions to the Bethe equations

In this section we collect some solutions to the Bethe equations presented in the paper.

6.1 The α → 1 limit

We will now consider some solutions in the α → 1 limit. The simplest case is to consider
the SU(2) that remains compact. Setting L = 4, K1 = 2 and K2 = K3 = 0, and applying
the momentum constraint, we have a single solution

u1,1 =
α√
3
, u1,2 = − α√

3
. (6.1)

This state is in the (−2; 0; 2) representation of d(2, 1;α) and the energy is E = 3
α
h2.

To find more interesting solutions we set L = 4, K1 = K3 = 1 and K2 = 0, corre-
sponding to the (−2; 1; 1) representation. Then there are three solutions with zero total
momentum, an unpaired solution

u0
1,1 = 0 , u0

3,1 = 0 , (6.2)

22The above procedure will tell us how to incorporate two massless bosonic modes (and their su-
perpartners) into the integrability machinery. The AdS3 × S3 × T 4 model has four identical massless
bosonic modes (and their superpartners). We strongly suspect that once we know how to incorporate
two massless modes into the integrability machinery, we will also be able to incorporate the other two.
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and the parity pair

u±
1,1 = ±α , u±

3,1 = ∓(1 − α) . (6.3)

The energies are

E0 =
2

α
h2 +

2

1 − α
h2 , E± =

1

α
h2 +

1

1 − α
h2 . (6.4)

As α → 1 these energies diverge as expected from the discussion in section 5.

6.2 Twist-one operators

We will now consider the sl(2) sector and set L = 1. We will work with the dualized
Bethe equations (4.5). For the state (−K; 0; 0) the excitation numbers areK1 = K3 = K,
K̃2 = 0. The equations we want to solve are

u1,i + iα

u1,i − iα
=

K
∏

j 6=i

u1,i − u3,j − i

u1,i − u3,j + i
, (6.5a)

u3,i + i(1 − α)

u3,i − i(1 − α)
=

K
∏

j 6=i

u3,i − u1,j − i

u3,i − u1,j + i
. (6.5b)

To find solutions to these equations we introduce the Baxter polynomials [60, 76, 82]

Q1K(u) = c1K

∏

k=1

(u− u1,k) , Q3K(u) = c3K

∏

k=1

(u− u3,k) , (6.6)

where c1K and c3K are irrelevant normalization constants. The Bethe equations (6.5)
can then be rewritten as two coupled difference equations for the polynomials Q1K and
Q3K ,

T1KQ1K(u) = (u+ iα)Q3K(u+ i) − (u− iα)Q3K(u− i) , (6.7a)

T3KQ3K(u) = (u+ i(1 − α))Q1K(u+ i) − (u− i(1 − α))Q1K(u− i) . (6.7b)

In general T1K and T3K would be functions of u, but comparing powers of u on the two
sides of the equations we find that here T1K and T3K are independent of u.

The energy of a state can be calculated from the polynomials Q1K and Q3K as

EK = 2ih2 d

du
logQ1K(u)

∣

∣

∣

∣

∣

u=iα

+ 2ih2 d

du
logQ3K(u)

∣

∣

∣

∣

∣

u=i(1−α)

. (6.8)

For α = 1/2 we can set Q1K(u) = Q3K(u) = QK(u). The resulting equation has a
solution in terms of the Meixner polynomials [60]

QK(u) = 2F1(−K, iu+ 1
2
; 1; 2) , TK = (2K + 1)i , (6.9)

and gives the energy
E

(α=1/2)
K = 8h2(S1(K) − S−1(K)) , (6.10)
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where Sa(M) is the harmonic sum

Sa(M) =
M
∑

j=1

(sgn a)j

j|a|
. (6.11)

For general α we need to solve for both polynomials Q1K and Q2K . For a solution to
exist, the constants TlK have to satisfy

T1K = 2i(K + α) , T3K = 2i(K + 1 − α) . (6.12)

Using (6.7a) to eliminate the Q1K dependence in (6.7b) and introducing

v = −iu

2
, RK(v) = Q3K(2iv) . (6.13)

we get the equation
(

α2−1
4

− v2
)

(

RK(v + 1) − 2RK(v) +RK(v − 1)
)

−v
(

RK(v + 1) − RK(v − 1)
)

+K(K + 1)RK(v) = 0 .
(6.14)

This is a discrete form of the Legendre differential equation
(

α2−1
4

− v2
)

R′′
n(v) − 2vR′

n(v) + n(n + 1)Rn(v) = 0 . (6.15)

From this equation we can derive a recurrence relation for RK [83]

RK+1(v) − K2

16

K2 − α2

K2 − 1
4

RK−1(v) − vRK(v) = 0 . (6.16)

We have not been able to find a closed form solution of this equation, but it is straight
forward to find solutions for any K. The first few solutions for Q3K are

Q31(u) = − i

2
u , (6.17)

Q32(u) = −1

4
u2 +

1 − α

12
, (6.18)

Q33(u) =
i

8
u3 +

i(3α2 − 7)

40
u , (6.19)

Q34(u) =
1

16
u4 +

3α2 − 13

56
u2 +

3(1 − α2)(9 − α2)

560
. (6.20)

The Q1K polynomials are obtained from Q3K by substituting α → 1 − α. The corre-
sponding energies are

E1 = 2
(

1

α
+

1

1 − α

)

, (6.21)

E2 = 6
(

1

1 + α
+

1

2 − α

)

, (6.22)

E3 = 2
(

1

α
+

1

1 − α

)

− 10
(

1

1 + α
+

1

2 − α

)

+ 20
(

1

2 + α
+

1

3 − α

)

, (6.23)

E4 = 20
(

1

1 + α
+

1

2 − α

)

− 70
(

1

2 + α
+

1

3 − α

)

+ 70
(

1

3 + α
+

1

4 − α

)

. (6.24)
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We note that these energies are of the form

EK =
K
∑

m=1

cm

(

1

(m− 1) + α
+

1

m− α

)

, cm ∈ Z , (6.25)

with c1 = 0 for even K. Hence the energies of the odd states diverge as α approaches 0
or 1.

6.3 Degeneracies in the spectrum

Let us a ssume that we have a solution to the Bethe equations (2.15) where one of the
u2,k roots sits at zero:

u2,K2
= 0 , (6.26)

and with total momentum

K1
∏

i=1

u2,i + iα

u2,i − iα

K3
∏

i=1

u2,i + i(1 − α)

u2,i − i(1 − α)
= 1 . (6.27)

The equations for the roots at the first and third nodes then read

(

u1,i + iα

u1,i − iα

)L+1

=
K1
∏

k=1
k 6=i

u1,i − u1,k + 2iα

u1,i − u1,k − 2iα

K2−1
∏

k=1

u1,i − u2,k − iα

u1,i − u2,k + iα
, (6.28a)

(

u3,i + i(1 − α)

u3,i − i(1 − α)

)L+1

=
K3
∏

k=1
k 6=i

u3,i − u3,k + 2i(1 − α)

u3,i − u3,k − 2i(1 − α)

K2−1
∏

k=1

u3,i − u2,k − i(1 − α)

u3,i − u2,k + i(1 − α)
. (6.28b)

and the equation for u2,K2
becomes

1 =
K1
∏

k=1

u2,k + iα

u2,k − iα

K3
∏

k=1

u2,k + i(1 − α)

u2,k − i(1 − α)
. (6.28c)

The last equation is automatically fulfilled since we assumed the solution to satisfy the
momentum condition. Hence the resulting equations are the same as what we would get
for a state with the same d(2, 1;α) charges but with the length increased by one and the
excitation number of the middle node lowered by one.

The same degeneracy is seen in the osp(4|2) sector of ABJM [60]. However, in that
case the two degenerate states are actually part of the same representation of the full
osp(6|4) algebra. It would be interesting to undertand the origin of the degeneracy in
the spectrum of the d(2, 1;α) spin-chain.

7 Conclusions

In this paper we have investagated the AdS3/CFT2 correspondences with 16 supersym-
metries using integrable techniques. There are two classes of such dual pairs: those with
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psu(1, 1|2)2 symmetry and those with d(2, 1;α)2 symmetry, corresponding to AdS3 ×
S3 × T 4 and AdS3 × S3 × S3 × S1 spacetimes, respectively. We have presented a set of
all-loop BA equations valid for all values of the parameter α, generalising the α = 1/2
BA given in [1], resolving one of the puzzles left open in that paper.

In the remainder of the paper we have considered the weakly coupled limit of the
psu(1, 1|2)2 and d(2, 1;α)2 BA equations. This is analogous to the perturbative gauge
theory limit in the AdS5/CFT4 correspondence. We have constructed integrable spin-
chains with local interactions whose energies reproduce both sets of weakly coupled
BA equations. In section 5 we addressed the second unresolved puzzle mentioned in
the introduction: incorporating massless modes into the integrability description of the
gauge/string correspondence. Recall that the AdS3 ×S3 ×T 4 BA is missing four massless
bosonic modes (and four fermionic superpartners). On the other hand, the AdS3 ×S3 ×
S3 ×S1 BA is missing only two massless bosons (and their superpartners). In the α → 1
limit the Hamiltonian of the alternating spin-chain and certain solutions of the weakly-
coupled d(2, 1;α)2 BA diverge. We argue that these divergences signal the appearance
of massless modes in the α → 1 limit. These massless states are precisely the two
extra massless bosons (and their superpartners) that the AdS3 × S3 × T 4 BA is missing
compared to the AdS3 × S3 × S3 × S1 BA.

In general, it might be very difficult to retain control over such divergences coming
from extra massless states appearing as one varies a parameter in the theory. If that
were the case, there would be little hope for understanding the massless modes by in-
vestigating the α → 1 limit. However, the theory we are considering is integrable; and
while the Hamiltonian and certain solutions of the BA diverge in this limit, we show
that the integrable structure underlying the alternating d(2, 1;α)2 spin-chain remains
non-singular in the α → 1 limit. This leads us to posit that the α → 1 limit of the alter-
nating d(2, 1;α)2 spin-chain R-matrix that we have constructed in this paper, describes
not just the massive modes coming from the homogenous spin-chain coming from the
weakly coupled AdS3 × S3 × T 4 BA, but also two of the four missing zero modes (and
their superpartners). We will return to a more detailed study of this later [81].
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A Representations of the d(2, 1; α) superalgebra

We are mostly interested in the short representations (−α
2
; 1

2
; 0) and (−1−α

2
; 0; 1

2
). The

tensor product between these state decomposes as

(−α
2
; 1

2
; 0) ⊗(−1−α

2
; 0; 1

2
) = (−1

2
; 1

2
; 1

2
) ⊕

j≥0
(−1 − j; 0; 0) . (A.1)

We also need the decompositions

(−α
2
; 1

2
; 0) ⊗(−α

2
; 1

2
; 0) = (−α; 1; 0) ⊕

j≥0
(−α − j; 0; 0) , (A.2)

(−1−α
2

; 0; 1
2
) ⊗(−1−α

2
; 0; 1

2
) = (−(1 − α); 0; 1) ⊕

j≥0
(−(1 − α) − j; 0; 0) . (A.3)

A.1 Representations

The (−α
2
; 1

2
; 0) representation consists of the bosonic states |φ(n)

α 〉, which transform as a

doublet under Lm, and the fermions |ψ(n)
α̇ 〉, transforming as a doublet under Rṁ. The

non-vanishing action of the d(2, 1;α) generators on these states are given by

L5 |φ(n)
± 〉 = ±1

2
|φ(n)

± 〉 , L+ |φ(n)
− 〉 = |φ(n)

+ 〉 , L− |φ(n)
+ 〉 = |φ(n)

− 〉 ,

R8 |ψ(n)
± 〉 = ±1

2
|ψ(n)

± 〉 , R+ |ψ(n)
− 〉 = |ψ(n)

+ 〉 , R− |ψ(n)
+ 〉 = |ψ(n)

− 〉 ,
(A.4)

S0 |φ(n)
α 〉 = −

(

α

2
+ n

)

|φ(n)
α 〉 ,

S− |φ(n)
α 〉 = −

√

(n+ α)(n+ 1) |φ(n+1)
α 〉 ,

S+ |φ(n)
α 〉 =

√

(n− 1 + α)n |φ(n−1)
α 〉 ,

S0 |ψ(n)
α̇ 〉 = −

(

α+ 1

2
+ n

)

|ψ(n)
α̇ 〉 ,

S− |ψ(n)
α̇ 〉 = −

√

(n+ 1)(n+ 1 + α) |ψ(n+1)
α̇ 〉 ,

S+ |ψ(n)
α̇ 〉 =

√

n(n+ α) |ψ(n−1)
α̇ 〉 ,

(A.5)

Q−±α̇ |φ(n)
∓ 〉 = ±

√
n+ α |ψ(n)

α̇ 〉 , Q+±α̇ |φ(n)
∓ 〉 = ±√

n |ψ(n−1)
α̇ 〉 ,

Q−α± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n+1)

α 〉 , Q+α± |ψ(n)
∓ 〉 = ∓

√
n+ α |φ(n)

α 〉 .
(A.6)

It is straightforward to check that the above expressions satisfy the d(2, 1;α) algebra.
To get the (−1−α

2
; 0; 1

2
) representation, we from the above expressions, exchange the

Lm and Rṁ generators and replace α → 1 − α. The corresponding state are |φ̄(n)
α̇ 〉 and

|ψ̄(n)
α 〉, and the actions of the generators are

L5 |ψ̄(n)
± 〉 = ±1

2
|ψ̄(n)

± 〉 , L+ |ψ̄(n)
− 〉 = |ψ̄(n)

+ 〉 , L− |ψ̄(n)
+ 〉 = |ψ̄(n)

− 〉 ,

R8 |φ̄(n)
± 〉 = ±1

2
|φ̄(n)

± 〉 , R+ |φ̄(n)
− 〉 = |φ̄(n)

+ 〉 , R− |φ̄(n)
+ 〉 = |φ̄(n)

− 〉 ,
(A.7)
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S0 |φ̄(n)
α̇ 〉 = −

(

1 − α

2
+ n

)

|φ̄(n)
α̇ 〉 ,

S− |φ̄(n)
α̇ 〉 = −

√

(n+ 1 − α)(n+ 1) |φ̄(n+1)
α̇ 〉 ,

S+ |φ̄(n)
α̇ 〉 =

√

(n− α)n |φ̄(n−1)
α̇ 〉 ,

S0 |ψ̄(n)
α 〉 = −

(

2 − α

2
+ n

)

|ψ̄(n)
α 〉 ,

S− |ψ̄(n)
α 〉 = −

√

(n+ 1)(n+ 2 − α) |ψ̄(n+1)
α 〉 ,

S+ |ψ̄(n)
α 〉 =

√

n(n+ 1 − α) |ψ̄(n−1)
α 〉 ,

(A.8)

Q−α± |φ̄(n)
∓ 〉 = ±

√
n + 1 − α |ψ̄(n)

α 〉 , Q+α± |φ̄(n)
∓ 〉 = ±√

n |ψ̄(n−1)
α 〉 ,

Q−±α̇ |ψ̄(n)
∓ 〉 = ∓

√
n + 1 |φ̄(n+1)

α̇ 〉 , Q+±α̇ |ψ̄(n)
∓ 〉 = ∓

√
n+ 1 − α |φ̄(n)

α̇ 〉 .
(A.9)

B The psu(1, 1|2) superalgebra

We obtain the psu(1, 1|2) algebra by taking the α → 1 (or, equivalently, α → 0) limit of
the d(2, 1;α) algebra. However, depending on how the limit is approach, slightly different
versions of the resulting algebra can be obtained. By comparing with the corresponding
coset sigma model in [1] we see that to get the relevant limit we need to rescale the
generators Rṁ → Rṁ/

√
1 − α before letting α → 1. The resulting algebra then reads23

[Sµ, Sν ] = i ǫµνρ S
ρ , [Sµ, Qaαα̇] =

1

2
Qbαα̇γ

b
µ a ,

[Lm, Ln] = i ǫmnp L
p , [Lm, Qaαα̇] =

1

2
Qaβα̇γ

β
m α ,

{Qaαα̇, Qbββ̇} = − (Sµ (ǫγµ)ab ǫαβ + Lm ǫab (ǫγm)αβ) ǫα̇β̇ .

(B.1)

The psu(1, 1|2) algebra is equipped with an outer su(2) automorphism, which com-
mutes with the bosonic generators and under which the supercharges transform as a
doublet, as indicated by the third, dotted, index. Hence the action of these su(2) gen-
erators on the algebra is the same as the action of the Rṁ generators of the d(2, 1;α)
algebra in (3.1). Note, however, that these additional generators are not identical with
Rṁ, since the latter, in the limit α → 1, commute both among themselves and with
psu(1, 1|2).

Let us now consider what happens to the representations in the last section as α → 1.
With the above scaling, the Rṁ generators annihilate all states. The rest of the states
in the (−α

2
; 1

2
; 0) representation in (A.4)–(A.6) transform as

L5 |φ(n)
± 〉 = ±1

2
|φ(n)

± 〉 , L+ |φ(n)
− 〉 = |φ(n)

+ 〉 , L− |φ(n)
+ 〉 = |φ(n)

− 〉 , (B.2)

23If we take the limit without rescaling the Rṁ generators, these generators would appear as an
su(2) outer automorphism of the resulting algebra. Another alternative would be to instead rescale
Rṁ → Rṁ/(1−α). Then Rṁ would appear as three commuting central charges in the anti-commutators
of the supercharges (see [84, 85]).
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S0 |φ(n)
α 〉 = −

(

1

2
+ n

)

|φ(n)
α 〉 , S0 |ψ(n)

α̇ 〉 = − (1 + n) |ψ(n)
α̇ 〉 ,

S− |φ(n)
α 〉 = −(n + 1) |φ(n+1)

α 〉 , S− |ψ(n)
α̇ 〉 = −

√

(n+ 1)(n+ 2) |ψ(n+1)
α̇ 〉 ,

S+ |φ(n)
α 〉 = n |φ(n−1)

α 〉 , S+ |ψ(n)
α̇ 〉 =

√

n(n + 1) |ψ(n−1)
α̇ 〉 ,

(B.3)

Q+±α̇ |φ(n)
∓ 〉 = ±√

n |ψ(n−1)
α̇ 〉 , Q−±α̇ |φ(n)

∓ 〉 = ±
√
n+ 1 |ψ(n)

α̇ 〉 ,
Q+α± |ψ(n)

∓ 〉 = ∓
√
n+ 1 |φ(n)

α 〉 , Q−α± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n+1)

α 〉 .
(B.4)

This is the same spin representation that appears in the psu(1, 1|2) sector of N = 4
SYM [59].

The limit of the (−1−α
2

; 0; 1
2
) representation is more interesting. Setting α = 1 in

(A.7)–(A.9) we obtain

L5 |ψ̄(n)
± 〉 = ±1

2
|ψ̄(n)

± 〉 , L+ |ψ̄(n)
− 〉 = |ψ̄(n)

+ 〉 , L− |ψ̄(n)
+ 〉 = |ψ̄(n)

− 〉 , (B.5)

S0 |φ̄(n)
α̇ 〉 = −n |φ̄(n)

α̇ 〉 , S0 |ψ̄(n)
α 〉 = −

(

1

2
+ n

)

|ψ̄(n)
α 〉 ,

S− |φ̄(n)
α̇ 〉 = −

√

n(n+ 1) |φ̄(n+1)
α̇ 〉 , S− |ψ̄(n)

α 〉 = −(n + 1) |ψ̄(n+1)
α 〉 ,

S+ |φ̄(n)
α̇ 〉 =

√

n(n − 1) |φ̄(n−1)
α̇ 〉 , S+ |ψ̄(n)

α 〉 = n |ψ̄(n−1)
α 〉 ,

(B.6)

Q+±α̇ |φ̄(n)
∓ 〉 = ±√

n |ψ̄(n−1)
α 〉 , Q−α± |φ̄(n)

∓ 〉 = ±√
n |ψ̄(n)

α 〉 ,
Q+±α̇ |ψ̄(n)

∓ 〉 = ∓√
n |φ̄(n)

α̇ 〉 , Q−±α̇ |ψ̄(n)
∓ 〉 = ∓

√
n+ 1 |φ̄(n+1)

α̇ 〉 .
(B.7)

Note, that the states |φ̄(0)
± 〉 are annihilated by all generators. Hence, this representation

is reducible. The highest weight state of the general α representation becomes a pair of
singlets. To identify the rest of the representation we define a new set of bosonic states
|ϕ̄(n)

± 〉 = − |φ̄(n+1)
± 〉. The algebra then reads

L5 |ψ̄(n)
± 〉 = ±1

2
|ψ̄(n)

± 〉 , L+ |ψ̄(n)
− 〉 = |ψ̄(n)

+ 〉 , L− |ψ̄(n)
+ 〉 = |ψ̄(n)

− 〉 , (B.8)

S0 |ψ̄(n)
α 〉 = −

(

1

2
+ n

)

|ψ̄(n)
α 〉 , S0 |ϕ̄(n)

α̇ 〉 = −(n+ 1) |ϕ̄(n)
α̇ 〉 ,

S− |ψ̄(n)
α 〉 = −(n+ 1) |ψ̄(n+1)

α 〉 , S− |ϕ̄(n)
α̇ 〉 = −

√

(n+ 1)(n+ 2) |ϕ̄(n+1)
α̇ 〉 ,

S+ |ψ̄(n)
α 〉 = n |ψ̄(n−1)

α 〉 , S+ |ϕ̄(n)
α̇ 〉 =

√

n(n+ 1) |ϕ̄(n−1)
α̇ 〉 ,

(B.9)

Q+±α̇ |ψ̄(n)
∓ 〉 = ±√

n |ϕ̄(n−1)
α̇ 〉 , Q−±α̇ |ψ̄(n)

∓ 〉 = ±
√
n+ 1 |ϕ̄(n)

α̇ 〉 ,
Q+±α̇ |ϕ̄(n)

∓ 〉 = ∓
√
n+ 1 |ψ̄(n)

α 〉 , Q−α± |ϕ̄(n)
∓ 〉 = ∓

√
n+ 1 |ψ̄(n+1)

α 〉 .
(B.10)

Comparing these expressions to (B.2)–(B.4), we see that this is almost the same represen-
tation except that the roles of the bosonic and fermionic states have been interchanged.
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C Global charges

The global charges corresponding to a set of Bethe roots can be read off by adding a
Bethe root close to u = ∞ [78]. From the general equations in (2.16) we get24

1 =

(

ul,i − i
2
~αl · ~w

ul,i + i
2
~αl · ~w

)L
∏

l′

Kl′
∏

j
(j,l′)6=(i,l)

ul,i − ul′,j + i
2
~αl · ~αl′

ul,i − ul,j − i
2
~αl · ~αl′

≈ 1 − i

ul,i
~αl ·

(

L~w −
∑

l′
Kl′~αl′

)

+ · · · .

(C.1)

For d(2, 1;α) the charges for a state with excitation numbers K1, K2, K3 are

(p; q; r) =
(

−L+K2

2
; L+K2

2
−K1; L+K2

2
−K3

)

. (C.2)
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